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Abstract

Many problems in the empirical sciences and rational decision making require causal,

rather than associative, reasoning. The field of causal inference is concerned with

establishing and quantifying cause-effect relationships to inform interventions, even

in the absence of direct experimentation or randomization. With the proliferation

of massive datasets, it is crucial that we develop principled approaches to drawing

actionable conclusions from imperfect information. Inferring valid causal conclusions

is impeded by the fact that data are unstructured and filled with different sources

of bias. The types of bias that we consider in this thesis include: confounding bias

induced by common causes of observed exposures and outcomes, bias in estimation

induced by high dimensional data and curse of dimensionality, discriminatory bias

encoded in data that reflect historical patterns of discrimination and inequality, and

missing data bias where instantiations of variables are systematically missing.

The focus of this thesis is on the development of novel causal and statistical

methodologies to better understand and resolve these pressing challenges. We draw

on methodological insights from both machine learning/artificial intelligence and

statistical theory. Specifically, we use ideas from graphical modeling to encode our

assumptions about the underlying data generating mechanisms in a clear and succinct

manner. Further, we use ideas from nonparametric and semiparametric theories to

enable the use of flexible machine learning modes in the estimation of causal effects

that are identified as functions of observed data.

There are four main contributions to this thesis. First, we bridge the gap between
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identification and semiparametric estimation of causal effects that are identified in

causal graphical models with unmeasured confounders. Second, we use semiparametric

inference theory for marginal structural models to give the first general approach

to causal sufficient dimension reduction of a high dimensional treatment. Third, we

address conceptual, methodological, and practical gaps in assessing and overcoming

disparities in automated decision making using causal inference and constrained

optimization. Fourth, we use graphical representations of missing data mechanisms and

provide a complete characterization of identification of the underlying joint distribution

where some variables are systematically missing and others are unmeasured.
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Preface

Prior to working with Ilya, I had almost no exposure to the field of causal inference. My

first encounter with “causal reasoning” was a cosmological argument in my pre-college

theology courses, which I was not impressed by. Years later when I was doing my

masters in statistics, the mantra of “correlation is not causation” got stuck in my

head. The summer before applying to PhD programs, I visited my sister, Marzieh, in

California and found the Causality book by Judea Pearl in her bookshelf. I started

reading parts of it, and came across this quote: “I would rather discover one causal

law than be King of Persia” – Democritus. Semi-seriously I thought to myself: maybe

if I pursue a degree in causal inference, one day if I am presented with the throne to

be the Queen of Persia, I can decline because at that point I might have learned many

causal laws! Marzieh’s book now sits in my bookshelf.

When I joined the CS program at Hopkins, I started working with Ilya on two

separate projects. The first one was on a causal view of algorithmic fairness. There

are many stories where AI algorithms demonstrate discriminatory, and potentially

harmful, behaviors towards minorities. Initially, I relied on this work as a positive

vehicle for addressing the discrimination I felt due to the restrictive immigration

policies and the travel ban in the US. Over time, I found more purpose in my research

as it seeks to raise awareness and improve the lives of underrepresented minorities.

My research on algorithmic fairness (described in Chapter 3) led to the development

of a causal framework to interrogate and modify AI algorithms to not rely on sensitive

attributes, like race or gender, in inappropriate ways.
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The basis for my research on use of semiparametric theory in estimation of causal

quantities originally stemmed from my passion for developing a method that establishes

the cause-effect relations between the high dimensional treatment of radiation therapy

and salivary dysfunctions. This was the second project I was working on in parallel

with algorithmic fairness (described in Chapter 2). This launched me into reading

the book on Semiparametric Theory and Missing Data by Anastasios Tsiatis. In a

few months, we (Ilya’s group) joined forces with folks at the Biostats department,

and our discussions turned into a regular story time narrated by Dan Scharfstein.

For over a year, every Friday we would gather in the library on the 3rd floor of the

School of Public Health, and enjoy story time accompanied with coffee and donuts

from Dunkin’. Receiving validation from senior researchers in the semiparametrics

field like Dan boosted my confidence and I grew to enjoy it even more.

On the other hand, a colleague of mine, Rohit, was not quite as impressed as I

was about the theory. His main issue was lack of an automated procedure to derive

influence functions and perform projections. Focusing on average causal effects, Rohit

and I started thinking about an automated procedure to find influence functions for

effects that are identified in causal graphical models with unmeasured confounders

(described in part in Chapter 2). Prior to this, Rohit and I worked on two papers on

missing data identification (Chapter 4) which stemmed from working on structure

learning with missing data and getting stuck at the “wasteland” of non-identifiable

laws. We paused the structure learning project and started thinking more carefully

about the identifiability aspects of missing data models.

If I am ever given a chance to go back in time and re-do my PhD, I would try

harder to stick to the principles beautifully presented in this quote: “The important

thing in life is not to conquer but to fight well and not to win but to take part.” –

Pierre de Coubertin.
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Chapter 1

Introduction

Many problems in the empirical sciences and rational decision making require causal,

rather than associative, reasoning. For instance, an important task in most studies

in the health sciences and public policies is deriving better data-driven treatment

decisions and designing optimal interventions. This requires reasoning counterfactually

and thinking about the consequences of interventions, e.g., “would patient X have

suffered the adverse outcome Y if they had, contrary to fact, been treated with drug

A instead of B?" or “what is the expected mortality rate in a regime where every

patient is assigned to treatment T?.”

Answering causal and counterfactual questions based on data requires a formalism

for expressing and evaluating what might be (or might have been) observed in various

situations not necessarily represented in the data. This requires certain extensions

in the standard mathematical language of statistics. Several (largely equivalent)

frameworks have been developed for the theory of causality based on structural

equation models, the potential outcomes framework of Neyman, and causal graphical

models developed for probabilistic reasoning and causal inference.

With the proliferation of massive datasets, it is crucial that we develop principled

approaches to drawing actionable conclusions from imperfect information. Unfortu-

nately, data are commonly unstructured and filled with different sources of bias. This
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makes drawing valid causal conclusions challenging. Examples of different types of

bias that exist in data include: (i) confounding bias induced by common causes of

observed exposures and outcomes, (ii) bias in estimation induced by high dimensional

data and curse of dimensionality, (iii) discriminatory bias encoded in data that reflect

historical patterns of discrimination and inequality, and (iv) missing data bias where

instantiations of variables are systematically missing.

The theme of this thesis is understanding and resolving these complications in data.

This entails exploiting tools from statistics, optimization theory, machine learning, and

artificial intelligence. Specifically, we use ideas from semiparametric theory to derive

estimators for causal effects with desirable statistical properties such as fast rates of

convergence and quantification of uncertainty. Further, we use ideas from graphical

modeling to encode our assumptions about the underlying data generating mechanisms

in a clear and succinct manner. The contributions of this thesis on tackling the four

challenges, mentioned above, can be summarized as follows.

It is commonly assumed that all common causes (a.k.a. confounders) between the

treatment and outcome are measured. However, in observational data, it is difficult to

justify this assumption. In the first section of Chapter 2, we bridge the gap between

identification and estimation theories for causal effects in causal graphical models

with unmeasured confounders. In particular, we derive doubly robust semiparametric

estimators for a significant subset of hidden variable causal graphical models. These

estimators allow for only partial specification of the data-generating process, and

enable the use of flexible ML methods while retaining desirable statistical properties

such as
√
n- consistency, asymptotic normality, and in some cases robustness to model

misspecification..

In the second section of Chapter 2, we consider scenarios where even if all confouding

variables are measured, drawing causal conclusions can still be challenging. In classical

causal inference, the treatment variable is often assumed to take on binary values
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as in treatment vs. placebo or continuous values as in drug dosages. However, in

certain applications, we might encounter a treatment with values that lie in a higher

dimensional space. For instance, oncologists are interested in the effect of radiation

therapy on salivary dysfunction in head and neck cancer patients. Unlike standard

treatments, radiation is represented via 3D voxel maps of exposure dosages on the

organs involved in the radiation therapy. In the second section of Chapter 2, we propose

a strategy for performing a feasible causal analysis by finding a lower dimensional

representation of the treatment in a way that preserves its causal effect on the outcome.

Another challenge in data-driven decision making is counteracting discrimina-

tory biases reflected in data. With the massive expansion of available data and

advancements in ML algorithms, increasingly important decisions are being auto-

mated. Unfortunately, this increases the potential for discriminatory biases to become

“baked in” to automated systems that influence people’s lives. Without careful adjust-

ments for these biases during learning and deployment of automated systems, these

systems could indeed put certain individuals at risk of discrimination. In Chapter 3,

we aim to address conceptual, methodological, and practical gaps in assessing and

overcoming disparities in automated decision making by a combination of tools from

causal mediation analysis and constrained optimization.

A ubiquitous source of bias in applied data analyses is missing data which results

in target distributions that are systematically censored by a missingness process. A

common modeling approach assumes data entries are censored in a way that does

not depend on the underlying missing data, known as the missing completely at

random (MCAR) model, or only depends on observed values in the data, known as

the missing at random (MAR) model. These simple models are insufficient however,

in problems where missingness status may depend on underlying values that are

themselves censored. This type of missingness is known as missing not at random

(MNAR). While the underlying target distribution is often not identified from observed
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data under MNAR, there exist identified MNAR models. In Chapter 4, we show

that the most general currently known methods for identification in graphical models

of missing data retain a significant gap, in the sense that they fail to identify the

underlying joint distribution in many models where it is indeed identified. Further, we

provide a complete characterization of identification of the underlying joint distribution

where some variables are systematically missing and others are unmeasured.

In the remainder of this chapter, we provide an overview of causal inference and

introduce some preliminaries that are required for the development of methods in the

following chapters.

Disclaimer: The results presented in Section 2.1 and Chapter 4 are based on co-

first-author papers that the author of this dissertation shares with Rohit Bhattacharya.

Some text appearing in these chapters (and related introductory material in Chapter 1

may be similar across our dissertations.

1.1 Causal Inference Workflow

In causal inference, we are interested in consequences of interventions or counterfactual

questions. For example, “what would happen to Y if an “upstream” variable T is

intervened on and set to t?” or “would the value of Y have been different if, contrary

to the fact, T had been different?”

Causal targets of interest are often captured via contrasts of random variables of

the form Y (t), which denotes the potential outcome (a.k.a. counterfactual) Y had

treatment T been assigned to t, possibly contrary to the fact [Neyman, 1923]. The

counterfactual variable Y (t) is equivalent to Y | do(t) in Judea Pearl’s do-calculus

notation [Pearl, 2009]. A common causal target of interest is the average causal effect

(ACE) of treatment T on outcome Y, defined via the following contrast

ACE := E[Y (t)− Y (t′)]. (1.1)
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Alternative quantities of interest are conditional causal effects (a.k.a heterogeneous

effect or subgroup effects), direct, indirect, and path-specific effects (capturing decom-

position of an effect along different causal pathways), or dynamic treatment regimes

(used in precision medicine and longitudinal decision-making processes).

In order to compute causal quantities from data, we must first posit a causal model,

which encodes a set of conditional independence restrictions on the distribution of

potential outcomes and other relevant variables. Given a causal model, the causal

workflow starts with determining whether the target of interest is identified, i.e.,

uniquely computable as a function of the observed data distribution, finding efficient

ways of estimating the target, and performing sensitivity analysis on the assumptions

made along the way. To illustrate the causal workflow, consider the following example.

Example 1.1. Assume there exist a joint distribution over a set of observed variables

Z denoted by p(Z). Assume we have a set of n independent and identically distributed

(iid) samples drawn from p(Z). We are interested in the average causal effect of a

treatment T on an outcome Y, i.e., ACE defined in (1.1). In order to compute ACE

from the observed data, we need to follow four main steps described below.

Step 1: Causal model – A causal model is a set of distributions defined over the

counterfactual and factual variables. A popular causal model is known as conditionally

ignorable model, which encodes three main assumptions:

(1) Consistency: The observed outcome Y is equal to the potential outcome Y (t)

when the treatment received is t. This is expressed as Y (T ) = Y, where Y (T )

reads as “the random variable Y had treatment T been assigned to whatever

value it would have naturally attained,”

(2) Conditional ignorability: There exists a set of measured pre-treatment covariates

C that renders the treatment T conditionally independent of the potential

outcomes given C, i.e., Y (t) ⊥⊥ T | C, ∀t ∈ XT , where (· ⊥⊥ · | ·) represents
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conditional independence and XV denotes the state space of variable V, and

(3) Positivity: For each level of the covariates C, the probability of receiving

treatment is greater than zero, i.e., p(T = t | C = c) > 0,∀t ∈ XT , c ∈ XC .

Step 2: Identification – In causal inference, we use assumptions encoded in the

causal model to link observed data with counterfactual contrasts of interest. When

such a functional exists, we say the causal parameter is identified from the observed

data under the causal model; otherwise, the parameter is unidentified.

Under the assumptions encoded in a conditionally ignorable model, the counter-

factual distribution p(Y (t)), for any value t of T , is identified via ∑︁
C p(Y | T =

t, C)× p(C). Therefore, the ACE is identified as the following function of the observed

data, known as the adjustment formula,

ACE = E
[︃
E
[︂
Y
⃓⃓⃓
T = t, C

]︂
− E

[︂
Y
⃓⃓⃓
T = t′, C

]︂]︃
, (1.2)

where the outer expectation is taken with respect to p(C) [Pearl, 2009, Robins, 1986].

Step 3: Estimation – After the causal parameter is identified as an observed

data functional, the inference problem can be viewed as a pure functional estimation

problem. In general, we are interested in deriving estimators with desirable statistical

properties, such as estimators that are unbiased and have low variance with fast rates

of convergence to normal limiting distributions. There are different approaches to

constructing such estimators, e.g., parametric likelihood methods, score matching,

inverse weighting methods, and nonparametric/semiparametric estimators.

The identified functional in (1.2) yields a simple “plug-in” estimator. Assume

E[Y | T = t, C] is parameterized by a parameter vector ηy and the parametric form

of the regression is captured via the function µt(C; ηy), i.e., µt(C; ηy) ≡ E[Y | T =

t, C; ηy]. The plug-in estimator reduces to

ˆ︁ACEplug-in = Pn
[︃
µt
(︂
C;ˆ︂ηy)︂− µt′(︂C;ˆ︂ηy)︂]︃, (1.3)
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where Pn[.] := 1
n

∑︁n
i=1(.) and ˆ︂ηy are the maximum likelihood values of ηy.

Since assuming a correctly specified parametric observed data likelihood, or even a

correctly specified outcome regression µt(C; ηy) is unrealistic in practice, a variety of

other estimators have been developed that place semiparametric restrictions on the

observed data distribution. One such estimator is known as the inverse probability

weighting (IPW) which seeks to compensate for a biased treatment assignment by

reweighing observed outcomes of units assigned T = t by the inverse of the normalized

treatment assignment probability p(T = t | C). If this probability has a known

parametric form πt(C; ηtr) ≡ p(T = t | C), the IPW estimator takes the form

ˆ︁ACEipw = Pn
[︃{︂ I(T = t)
πt(C; ˆ︂ηtr) − I(T = t′)

πt′(C; ˆ︂ηtr)
}︂
× Y

]︃
, (1.4)

where I(.) is the indicator function and ˆ︂ηtr are the maximum likelihood estimates of ηtr.

The plug-in and IPW estimators of ACE are both
√
n-consistent and asymptotically

normal if the models they rely on, µt(C; ηy) and πt(C; ηtr) respectively, are parametric

and correctly specified. Otherwise, these estimators are no longer consistent. If flexible

models are used for µt(C) and πt(C) instead, the resulting estimators may remain

consistent, but with unacceptably slow rates; see [Chernozhukov et al., 2018] for

examples.

A principled alternative is to consider semiparametric influence function-based

estimators that converge to normal limiting distributions at desirable rates and come

equipped with reliable estimates of uncertainty. The counterfactual mean E[Y (t)]

in the ACE, which is identified via the adjustment formula, can be viewed as a

target parameter in a semiparametric model, yielding the following influence function,
I(T=t)
p(T=t|C) ×

{︂
Y −E[Y | T,C]

}︂
+ E[Y | T = t, C]−E[Y (t)]. This immediately yields the
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following augmented IPW (AIPW) estimator for the ACE,

ˆ︁ACEaipw = Pn
[︃ I(T = t)
πt(C; ˆ︂ηtr) ×

{︂
Y − µt(C;ˆ︂ηy)}︂+ µt(C;ˆ︂ηy)

− I(T = t′)
πt′(C; ˆ︂ηtr) ×

{︂
Y − µt′(C;ˆ︂ηy)}︂− µt′(C;ˆ︂ηy)]︃. (1.5)

This estimator exhibits the property of double robustness which means that AIPW

is a consistent estimator for ACE when either of the two models, i.e., πt(C; ηtr) and

µt(C; ηy), is correctly specified, even if the other model is arbitrarily misspecified.

In a semiparametric model, given by restrictions implied by a graphical model, the

influence function that yields the AIPW estimator, can be projected onto the tangent

space of the model to improve efficiency, see [Rotnitzky and Smucler, 2019] for details

and Section 1.4 for an overview on semiparametric theory.

Step 4: Sensitivity analysis – Establishing cause-effect relationships from observa-

tional data often relies on untestable assumptions such as the conditional ignorability

assumption. It is crucial to know whether, and to what extent, the conclusions drawn

from non-experimental studies are robust to potential unmeasured confounding.

There exists a rich literature on sensitivity analysis that looks at ACE as the

causal parameter of interest. The literature can be divided into two main approaches:

one seeks set identification and the other seeks point identification of ACE (at each

sensitivity parameter value.) In set identification, the ACE is restricted to an interval

informed by the observed distribution [Robins, 1989, Manski, 1990, Díaz and van der

Laan, 2013, Bonvini and Kennedy, 2019, Finkelstein and Shpitser, 2020]. In point

identification, a number of authors have proposed positing sensitivity analysis pa-

rameters to govern the relationship among unmeasured confounder(s), outcome, and

treatment [Rosenbaum and Rubin, 1983, Robins et al., 2000, Imbens, 2003, Dorie

et al., 2016, Zhang and Tchetgen, 2019, Franks et al., 2019]. Recent reviews on this

topic include [Liu et al., 2013, Richardson et al., 2014].

If a causal parameter is not identified in a given causal model, it means that the
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causal model does not encode the sufficient assumptions to relate the counterfactuals

to the factuals. In such scenarios, existing work either derive informative bounds, or

iterate between the first and the second steps in the causal workflow to restrict the

causal model enough, e.g., by adding extra assumptions, so that the causal parameter

is identified as a function of observed data. For instance, there is a huge body of

work on identification with instrumental variables which require assumptions such

as exclusion restriction (absence of direct effect) assumptions, as well as additional

parametric or semiparametric assumptions [Abadie, 2003, Okui et al., 2012, Wang

and Tchetgen Tchetgen, 2018].

The set of presumed independencies among variables can grow quite rapidly in

high dimensional settings. A convenient visual representation to communicate the

underlying statistical assumptions in the causal model, e.g., independencies and details

on (un)measured confounding mechanisms, is provided though causal graphical models.

Much of our focus in this dissertation lies in developing causal methods using the

language of graphical models, as they have proven useful in deriving novel results in

complex multivariate causal systems. In the next two sections, we provide an overview

of causal graphical models.

1.2 Causal Directed Acyclic Graphs

Causal models are often represented graphically through a form of graphical models

known as directed acyclic graphs (DAGs). We use capital letters V to denote sets

of random variables as well as corresponding vertices in graphs and lowercase letters

v to denote values or assignments to those random variables. As before, the state

space of variable Vi is denoted by XVi . A DAG G(V ) consists of a set of vertices V

connected by directed edges Vi → Vj (for some {Vi, Vj} ⊆ V ) such that there are no

directed cycles. The set paG(Vi) ≡ {Vj ∈ V | Vj → Vi} denotes the parents of Vi in

DAG G(V ). When the vertex set is clear from the given context, we often abbreviate
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G(V ) as simply G.

The statistical models of a DAG G(V ) are sets of distributions that factorize as,

p(V ) =
∏︂

Vi ∈ V

p(Vi | paG(Vi)). (1.6)

Each missing edge between pairs of variables in a DAG G imply conditional indepen-

dences in p(V ). These can be read off directly from G via the well-known d-separation

criterion [Pearl, 2009]. That is, for disjoint sets X, Y, and Z, the following global

Markov property holds: (X ⊥⊥d-sep Y | Z)G =⇒ (X ⊥⊥ Y | Z)p(V ). When the context

is clear, we simply use X ⊥⊥ Y | Z to denote conditional independence between X

and Y given Z.

The causal models of a DAG G(V ) are defined over counterfactual random variables

Vi(pai) for each Vi ∈ V, where pai is a set of values for paG(Vi). These counterfactuals

can alternatively be viewed as being determined by a system of structural equations

fi(pai, ϵi) that map values pai, as well as values of an exogenous noise term ϵi, to values

of Vi [Pearl, 2009]. Other counterfactuals may be defined via recursive substitution.

Specifically for any set A ⊆ V , and a variable Vi, we have:

Vi(a) ≡ Vi
(︂
a ∩ paG(Vi), {Vj(a) : Vj ∈ paG(Vi) \ A}

)︂
, (1.7)

where {Vj(a) : Vj ∈ paG(Vi) \ A} is taken to mean the (recursively defined) set of

counterfactuals associated with variables in paG(Vi) \ A, had A been set to a.

Consider the joint distribution over the potential outcome variables in V \A, where

each potential outcome is recursively defined via (1.7). Denote this joint distribution

by p({V \A}(a)), or p(V (a)) for short. In the functional model of a DAG G (as well as

some weaker causal models), p(V (a)) is identified via the g-formula functional [Robins,

1986] as follows,

p(V (a)) =
∏︂

Vi∈V \A
p
(︂
Vi | a ∩ paG(Vi), paG(Vi) \ A

)︂
. (1.8)
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Figure 1-1: (a) A simple causal DAG with treatment T, outcome Y, baseline variables
C, and a mediator M. (b) A causal graph with two mediators M and L and unmeasured
confounders captured in U . (c) Latent projection of the DAG in (b).

When A is the empty set, we obtain the familiar DAG factorization for G given in

(1.6). This implies that the causal model of a DAG G implies the statistical model of

the DAG.

Example 1.2. Consider the DAG in Fig. 1-1(a). By the recursive substitution in

(1.7), Y (t) is defined to be Y (t,M(t, C), C). By the g-formula in (1.8), the marginal

distribution of p(Y (t)) is identified as

p(Y (t)) =
∑︂
C,M

p(Y | T = t,M,C)× p(M | T = t, C)× p(C)

=
∑︂
C

p(Y | T = t, C)× p(C)

Example 1.3. Using the g-formula in (1.8), it can be easily shown that in all causal

models of a DAG G, the ACE is identified via the following simple functional

ACE = E
[︃
E
[︂
Y | T = t, paG(T )

]︂
− E

[︂
Y
⃓⃓⃓
T = t′, paG(T )

]︂]︃
. (1.9)

This is also known as the back-door adjustment formula [Pearl, 2009]. As mentioned

earlier, once the target parameter is identified, causal inference reduces to an estimation

problem of the identifying functional. There is a number of estimators proposed for

this functional, such as the plug-in (1.3), IPW (1.4), and AIPW (1.5) [Robins et al.,

1994b, Hahn, 1998, Robins, 2000, van der Laan and Rose, 2011].
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1.3 Causal DAGs with Hidden Variables

Causal models most relevant to practical applications are sure to contain variables

that are unmeasured or hidden to the data analyst. In such cases, the observed

data distribution p(V ) may be considered to be a margin of a distribution p(V ∪H)

associated with a DAG G(V ∪H) where vertices in V correspond to observed variables

and vertices in H correspond to unmeasured or hidden variables. Two complications

arise from the presence of hidden variables. First, the target parameter ψ(t) may not

always be identified as a function of the observed data and second, parameterizations of

latent variable models are generally not fully identifiable and may contain singularities

[Drton, 2009].

A natural alternative to the latent variable model is one that places no restrictions

on p(V ) aside from those implied by the Markov restrictions given by the factorization

of p(V ∪H) with respect to G(V ∪H). It was shown in [Evans, 2018] that all equality

constraints implied by such a factorization are captured by a nested factorization of

p(V ) with respect to an acyclic directed mixed graph (ADMG) G(V ) derived from

G(V ∪H) via the latent projection operation described by [Verma and Pearl, 1990a].

Such an ADMG is a smooth supermodel of infinitely many hidden variable DAGs that

share the same identification theory for ψ(t) and imply the same equality constraints

on the margin p(V ) [Richardson et al., 2017, Evans and Richardson, 2019]. Thus, our

use of ADMGs for identification and estimation of the target ψ(t) is without loss of

generality.

The latent projection of a hidden variable DAG G(V ∪H) onto observed variables

V is an ADMG G(V ) with directed (→) and bidirected (↔) edges constructed as

follows. The edge Vi → Vj exists in G(V ) if there exists a directed path from Vi to

Vj in G(V ∪H) with all intermediate vertices in H. An edge Vi ↔ Vj exists in G(V )

if there exists a collider-free path (i.e., there are no consecutive edges of the form
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→ ◦ ←) from Vi to Vj in G(V ∪H) with all intermediate vertices in H, such that the

first edge on the path is an incoming edge into Vi and the final edge is an incoming

edge into Vj. Conditional independences in p(V ) can then be read off from the ADMG

G(V ) by a simple analogue of the d-separation criterion, known as m-separation, that

generalizes the notion of a collider to include mixed edges of the form →◦↔,↔◦←,

and ↔◦↔, [Richardson, 2003]. An example of the latent projection is provided in

Fig. 1-1(b-c).

Factorization of ADMGs

We define the factorization of p(V ) relative to an ADMG G(V ) with the use of

conditional distributions known as kernels. A kernel qV (V | W ) is a mapping from

values of W to normalized densities over V. That is, ∑︁V qV (V | W = w) = 1, ∀w ∈ W

[Lauritzen, 1996]. For any set of variables X ⊆ V, marginalization and conditioning in

a kernel are defined as qV \X(V \X | W ) ≡ ∑︁
X qV (V | W ) and qV (V \X | X,W ) ≡

qV (V |W )
qV (X|W ) Further, the bidirected connected components of an ADMG G(V ) are essential

in the factorization of p(V ) relative to the ADMG G(V ).

The bidirected connected components partition its vertices into distinct subsets

known as districts. A set S ⊆ V is a district in G(V ) if it forms a maximal connected

component via only bidirected edges. We use disG(Vi) to denote the district of Vi in G,

which includes Vi itself, and D(G) to denote the set of all districts in G. A distribution

p(V ) is said to district factorize with respect to an ADMG G(V ) if

p(V ) =
∏︂

D∈D(G)
qD(D | paG(D)), (1.10)

where the parents of a set of vertices D is defined as the set of parents of D not

already in D, i.e., paG(D) ≡ ⋃︁Di∈D paG(Di) \D. We follow the same convention for

children of a set S, denoted chG(S). For other standard genealogical relations defined

for a single vertex Vi, such as ancestors anG(Vi) ≡ {Vj ∈ V | ∃ Vj → · · · → Vi in G}

and descendants deG(Vi) ≡ {Vj ∈ V | ∃ Vi → · · · → Vj in G}, both of which include
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Vi itself by convention, the extension to a set S uses the disjunctive definition which

also includes the set itself. For example, anG(S) = ⋃︁
Si∈S anG(Si).

The use of q in lieu of p in Eq. 1.10 emphasizes the fact that these factors are

not necessarily ordinary conditional distributions. Each factor qD(D | paG(D)) may

in fact be treated as a post-intervention distribution where all variables outside of

D are intervened on and held fixed to some constant value [Tian and Pearl, 2002].

Thus, we use qS(· | ·) to denote probability distributions where only variables in S

are random and all others are fixed. Such densities are often referred to as kernels

and are similar to conditional densities in the sense that they provide a mapping from

values of elements past the conditioning bar to normalized densities over variables

prior to the conditioning bar [Lauritzen, 1996]. Conditioning and marginalization in

kernels are defined in the usual way.

In [Tian and Pearl, 2002], it has been shown that each kernel qD(D | paG(D)) in

Eq. 1.10 is a function of p(V ) as follows. Define the Markov blanket of a vertex Vi

as the district of Vi and the parents of its district, excluding Vi itself, i.e., mbG(Vi) =

disG(Vi)∪paG(disG(Vi))\Vi. Consider a valid topological order τ on all k vertices in V,

that is a sequence (V1, . . . , Vk) such that no vertex appearing later in the sequence is

an ancestor of vertices earlier in the sequence. Let {⪯τ Vi} denote the set of vertices

that precede Vi in this sequence, including Vi itself. Then for each D ∈ D(G),

qD(D | paG(D)) =
∏︂
Di∈D

p(Di | mpG(Di)), (1.11)

where mpG(Vi), the Markov pillow of Vi, is defined as its Markov blanket in a subgraph

restricted to Vi and its predecessors according to the topological ordering. More

formally, mpG(Vi) ≡ mbGS(Vi) where S = {⪯τ Vi}, and GS is the subgraph of G that

is restricted to vertices in S and the edges between these vertices. This leads to a

factorization of the observed law as a product of simple conditional factors according
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to the topological order,

p(V ) =
∏︂
Vi∈V

p(Vi | mpG(Vi)). (Topological ADMG factorization) (1.12)

The above factorization (and the district factorization in (1.10)) does not always

capture every equality restriction in p(V ) implied by the Markov property of the

underlying hidden variable DAG G(V ∪H). However, it is particularly simple to work

with, and under some conditions is capable of capturing all such restrictions [Nabi

et al., 2020b]. It is shown that the nested Markov factorization of an ADMG captures

all equality constraints on the observed margin p(V ) [Richardson et al., 2017]. A

description of this factorization is provided in Appendix I.

The ease of conveying statistical assumptions visually, via a DAG [Pearl, 2009,

Spirtes et al., 2000], prompted further study of the identifiability of counterfactual

quantities in causal models that factorize according to a DAG, when some variables

may be hidden or unobserved [Tian and Pearl, 2002]. This led to the development of

a sound and complete characterization of the identifiability of the ACE for a given

treatment on a given outcome in all hidden variable causal models associated with

a DAG, or simply an ADMG [Shpitser and Pearl, 2006, Huang and Valtorta, 2006,

Richardson et al., 2017]. A complete identification algorithm provides necessary

and sufficient graphical condition under which the causal parameter is identified as

a function of the observed data distribution. For any given field of study, such a

characterization is one of the most powerful results that identification theory can offer,

as it comes with the guarantee that if these conditions do not hold, the parameter is

provably not identified in the model.

Despite the sophistication of causal identification theory, estimators based on

simple covariate adjustment remain the most common strategy for evaluating the

ACE from data. Estimates obtained in this way are often biased due to the presence

of unmeasured confounding and/or model misspecification. A popular approach for
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addressing the latter issue has been to use semiparametric estimators developed using

the theory of influence functions [Bickel et al., 1993, van der Vaart, 2000, Bang and

Robins, 2005, Tsiatis, 2007]. To the best of our knowledge, the front-door model

[Pearl, 1995] is the only graphical model with unmeasured confounders (where no valid

adjustment set exists but the effect is still identifiable in the corresponding causal

model) for which an influence function based estimator has been derived [Fulcher

et al., 2020]. Other related work includes numerical procedures for approximating the

influence function proposed by [Frangakis et al., 2015, Carone et al., 2019]. However,

such methods are either restricted to settings where simple covariate adjustment

is valid, or involve numerical approximations of the function itself which may be

computationally prohibitive.

1.4 Semiparametric Inference

Assume a statistical model M = {p(Z; η) : η ∈ Γ} where Γ is the parameter space

and η is the parameter indexing a specific distribution. We are often interested in

a function ψ : η ∈ Γ ↦→ ψ(η) ∈ R; i.e., a parameter that maps the distribution Pη

to a scalar number in R, such as an identified average causal effect. (For brevity,

we sometimes use ψ instead of ψ(η), which should be obvious from context.) The

true observed data distributions and true parameters are denoted by P0 and ψ0,

respectively.

An estimator ˆ︁ψn of a scalar parameter ψ based on n i.i.d copies Z1, . . . , Zn drawn

from p(Z; η), is asymptotically linear if there exists a measurable random function

Uψ(Z) with mean zero and finite variance such that

√
n× ( ˆ︁ψn − ψ) = 1√

n
×

n∑︂
i=1

Uψ(Zi) + op(1),

where op(1) is a term that converges in probability to zero as n goes to infinity. The

random variable Uψ(Z) is called the influence function (IF) of the estimator ˆ︁ψn. The

16



analysis is oftentimes restricted to regular and asymptotically linear (RAL) estimators

to avoid certain complications, such as super efficiency in Hodges estimator [Tsiatis,

2007]. The RAL estimator ˆ︁ψn is consistent and asymptotically normal (CAN), with

asymptotic variance equal to the variance of its influence function Uψ,

√
n× ( ˆ︁ψn − ψ) d−→ N

(︂
0, var(Uψ)

)︂
.

Influence functions in semiparametric models are derived as normalized elements

of the orthogonal complement of the tangent space of the model. First, define the

Hilbert space, denoted by H, as the space of all mean-zero scalar functions, equipped

with the inner product E[h1 × h2], ∀h1, h2 ∈ H [Bickel et al., 1993, van der Vaart,

2000, Tsiatis, 2007]. The tangent space of the statistical model M is defined as

the mean-square closure of all the linear combinations of the score functions in the

corresponding parametric submodels for M. We denote the tangent space by Λ.

The orthogonal complement of the tangent space, denoted by Λ⊥, is then defined as

Λ⊥ = {h ∈ H | E[h× h′] = 0,∀h′ ∈ Λ}. Note that H = Λ⊕ Λ⊥, where ⊕ denotes the

direct sum, and Λ ∩ Λ⊥ = {0}.

The vector space Λ⊥ is of particular importance because we can construct the

class of all influence functions, denoted by U , as U = {Uψ + Λ⊥}. In other words,

upon knowing a single influence function Uψ and Λ⊥, we can obtain the class of all

possible RAL estimators that admit the CAN property. Out of all IFs in U , there

exists a unique one which lies in the tangent space Λ and yields the most efficient RAL

estimator by recovering the semiparametric efficiency bound. This efficient influence

function can be obtained by projecting any influence function, call it U∗
ψ, onto the

tangent space Λ. This operation is denoted by U eff
ψ = π[U∗

ψ | Λ], where U eff
ψ denotes

the efficient influence function. In a nonparametric saturated model (one with an

unrestricted tangent space), the IF is unique; hence the corresponding estimator is the

one that achieves the semiparametric efficiency bound. For a more detailed description
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of the concepts outlined here, see Appendix II and [van der Vaart, 2000, Tsiatis, 2007].

In a semiparametric model of a DAG G(V ), which is defined by conditional

independence restrictions on the tangent space implied by the DAG factorization,

the tangent space Λ can be partitioned into a direct sum of orthogonal subspaces as

Λ ≡ ⊕Vi∈V Λi, where Λi ≡
{︂
αi(Vi, paG(Vi)) ∈ H | E[αi | paG(Vi)] = 0

}︂
.

If G is a complete DAG, i.e., every vertex is connected to every other vertex, then

there exist no independence relations between any sets of variables. In such scenarios,

the tangent space equals the entire Hilbert space. In general, any statistical model

with tangent space Λ, where Λ = H, is said to be nonparametric saturated (NPS).
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Chapter 2

Identification and Estimation in
Causal Inference

In classical causal inference, the treatment variable is often assumed to take on

binary values, where T = 1 corresponds to receiving the treatment itself and T = 0

corresponds to receiving a placebo. In some applications, treatments may take on

continuous values in R. For example, we might be interested in evaluating the effect

of a particular treatment dose on viral load. In such cases, in addition to contrasts

of responses to two specific doses, we may be interested in the entire dose-response

relationship, and choose to model it via a simple functional, for example a logarithmic

or sigmoidal function.

In other applications, we might be interested in assessing causal relationships

between outcomes and treatments with values that lie in a high dimensional space Rp.

These types of causal relationships arise in many applications. In natural language

processing interest lies in causal analyses that involve high dimensional text data

[Gentzkow et al., 2019]. Moreover, neuroimaging data are increasingly used to relate

neuronal network activity to cognitive processing and behavior. Functional magnetic

resonance imaging (fMRI) scans are widely used in psychological science, cognitive

science, and neuroscience to inform cognitive theories [Ramsey et al., 2010, Mather

et al., 2013]. Other applications include analysis of heterogeneous data in social
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networks or healthcare that includes images, time series, and other high dimensional

data sources.

We divide this chapter into two sections. In Section 2.1, we focus on how the

presence of unmeasured confounders may complicate the identification and estimation

of the causal effect of a single treatment T on a single outcome Y. We consider a class of

DAGs with hidden variables (or ADMGs) where there does not exist a valid adjustment

set to block all the back-door paths between the treatment and the outcome, as in

(1.2). However the effect can still be identified as a function of observed data. In

Section 2.2, we focus on a specific situation where presence of confounders (even if

they are all measured) can complicate our assessment of causal effects. We restrict our

attention to a conditionally ignorable model where all common confounders between

the treatment and the outcome of interest are measured and the effect is identified

via the adjustment functional. In this section, the treatment of interest is a high

dimensional treatment (T ∈ Rp, p > 1).

Throughout this chapter, we set our target of inference to be the mean of the

counterfactual random variable Y (t). That is,

ψ(t) ≡ E[Y (t)]. (target parameter) (2.1)

2.1 Single Treatment with Hidden Variables

If a causal model contains unmeasured confounders, causal inference becomes consid-

erably more complicated. The last decade witnessed the development of algorithms

that completely solve the identifiability problem for causal effects in hidden variable

causal models associated with DAGs [Shpitser and Pearl, 2006, Huang and Valtorta,

2006]. However, much of this machinery remains underutilized in practice owing to

the complexity of estimating identifying functionals yielded by these algorithms.

In this section, we provide a simple graphical criterion and semiparametric estima-
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Figure 2-1: Examples of acyclic directed mixed graphs where T is primal fixable.

tors that bridge the gap between identification and estimation of causal effect in a

large class of DAGs with hidden variables where the causal effect is identified, however

no valid covariate adjustment is available due to presence of unmeasured confounders.

Consider the ADMGs shown in Fig. 2-1. It is easy to check that in either case

there exists no valid adjustment set to identify the causal effect of T on Y. However,

such an effect is indeed identified in both graphs. The defining characteristic of these

ADMGs that permits identification of the target ψ(t), is that the district of T does

not intersect with its children, i.e., variables that have T as their parents on the graph

G and denoted by chG(T ).

In this section, we consider ADMGs where disG(T ) ∩ chG(T ) = ∅. This criterion

encompasses many popular models in the literature, including those that satisfy the

back-door and front-door criteria [Pearl, 2009], as special cases. We name this criterion

primal fixability or p-fixability for short (due to its generalization of the fixing criterion

introduced in the definition of the nested Markov model.)

Primal fixability is known to be a necessary and sufficient condition for the

identifiability of the causal effect of T on all other variables V \ T [Tian and Pearl,

2002]. In observed data distributions p(V ) that district factorize according to an

ADMG G(V ) where T is primal fixable, the resulting identifying functional for the

target is as follows.

ψ(t) =
∑︂
V \T

Y ×
∏︂

Vi∈V \DT

p(Vi | mpG(Vi))×
∑︂
T

∏︂
Vj∈DT

p(Vj | mpG(Vj))
⃓⃓⃓⃓
⃓
T=t

, (2.2)

where DT denotes the district of T [Tian and Pearl, 2002]. We provide this special
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notation for the district of T as DT due to its frequent occurrence in subsequent

results.

Assume p(V ) factorizes with respect to an ADMG G(V ) where T is primal fixable

and for simplicity of exposition, assume that Y has no descendants in G. The latter

assumption is not necessary and our results extend trivially to the setting where this

is not true; we use it only to avoid notational complexity [Nabi et al., 2020b]. We use

a fixed topological order τ where T is preceded by all its non-descendants and Y is

succeeded by all its non-descendants non-ancestors. The set of nodes V can then be

partitioned into three disjoint sets: V = {C,L,M}, where

C = {Ci ∈ V | Ci ≺ T},

L = {Li ∈ V | Li ∈ DT , Li ⪰ T},

M = {Mi ∈ V |Mi ̸∈ C ∪ L}. (2.3)

Rearranging some of the terms in Eq. 2.2, ψ(t) is identified as the following function

of the observed data in terms of the sets defined above.

ψ(t) =
∑︂
V \T

Y ×
∏︂

Mi∈M
p(Mi | mpG(Mi))

⃓⃓⃓
T=t
×
∑︂
T

∏︂
Li∈L

p(Li | mpG(Li))× p(C). (2.4)

We derive the corresponding influence function in the following theorem using

the pathwise derivative; see Appendix II for details. For readability, we use the form∏︁
Li≺Mi

as shorthand for ∏︁Li∈L|Li≺Mi
.

Theorem 1 (Nonparametric influence function of augmented primal IPW).

Given a distribution p(V ) that district factorizes with respect to an ADMG G(V ) where

T is primal fixable, the nonparametric influence function for the target parameter

ψ(t), denoted by Uψt , is as follows.
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Uψt =
∑︂
Mi∈M

{︄
I(T = t)∏︁

Li≺Mi
p(Li | mpG(Li))

×
(︃ ∑︂
T∪{≻Mi}

Y ×
∏︂

Vi∈ L ∪
{≻Mi}

p(Vi | mpG(Vi))|T=t if Vi∈M

−
∑︂

T∪{⪰Mi}
Y ×

∏︂
Vi∈ L ∪
{⪰Mi}

p(Vi | mpG(Vi)) |T=t if Vi∈M

)︃ }︄

+
∑︂

Li∈L\T

{︄ ∏︁
Mi≺Li p(Mi | mpG(Mi))|T=t∏︁
Mi≺Li p(Mi | mpG(Mi))

×
(︃ ∑︂

{≻Li}
Y ×

∏︂
Vi≻Li

p(Vi | mpG(Vi))|T=t if Vi∈M

−
∑︂

{⪰Li}
Y ×

∏︂
Vi⪰Li

p(Vi | mpG(Vi)) |T=t if Vi∈M

)︃ }︄

+
∑︂

V \{T,C}
Y ×

∏︂
Mi∈M

p(Mi | mpG(Mi))|T=t ×
∏︂

Li∈L\T
p(Li | mpG(Li))− ψ(t), (2.5)

where C,L,M are defined in display (2.3).

In the following lemma, we show that the influence function Uψt in Theorem 1 uses

information in the models for Mi ∈M and Li ∈ L in order to yield an estimator that

is doubly robust in these sets.

Lemma 1 (Double robustness of augmented primal IPW).

The estimator obtained by solving the estimating equation E[Uψt ] = 0, where Uψt is

given in Theorem 1, is unbiased if all models in either {p(Mi | mpG(Mi)), ∀Mi ∈M}

or {p(Li | mpG(Li)), ∀Li ∈ L} are correctly specified.

According to Lemma 1, the estimator derived from the nonparametric IF is a

doubly robust estimator. This allows us to perform consistent inferences for the target

parameter ψ(t) even in settings where a large part of the model likelihood is arbitrarily

misspecified, provided that conditional models for variables in either M or L are

specified correctly. In addition, the bias of the estimator has a product form which

allows parametric (
√
n) convergence rates for ψ(t) to be obtained even if flexible

machine learning models with slower than parametric convergence rates are used to

fit nuisance models. See [Chernozhukov et al., 2018] for details.
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We can obtain two different estimators for the identified functional in (2.2) with

terms that appear in the influence function provided in Theorem 1. This helps us in

viewing the influence function in (2.5) as augmenting an IPW-type estimator, in the

same way the AIPW estimator for the adjustment functional in (1.5) can be viewed

as augmenting the IPW estimator in (1.4) with the outcome regression model that

appears in the plug-in estimator in (1.3). We call these two estimators primal IPW

and dual IPW.

Lemma 2 (Primal and Dual IPWs).

Given a distribution p(V ) that district factorizes with respect to an ADMG G(V ) where

T is primal fixable, ψ(t) = ψ(t)primal = ψ(t)dual where

ψ(t)primal ≡ E
[︃
I(T = t)×

∑︁
T

∏︁
Vi∈L p(Vi | mpG(Vi))∏︁

Vi∈L p(Vi | mpG(Vi))
× Y

]︃
,

ψ(t)dual ≡ E
[︃∏︁

Vi∈M p(Vi | mpG(Vi)) |T=t∏︁
Vi∈M p(Vi | mpG(Vi))

× Y
]︃
. (2.6)

The representation of ψ(t) as ψ(t)primal and ψ(t)dual in Lemma 2 immediately yields

the corresponding primal and dual IPW estimators, via evaluating the expectations

empirically and using the plug-in principles. In Theorem 1, ψ(t)primal and ψ(t)dual

appear in the pieces that correspond to the variables in M and L, respectively, that

are preceded by all the other variables in the topological order.

2.1.1 Restrictions Implied by an ADMG

An ADMG G(V ) may encode two types of equality constraints: ordinary conditional

independence statements such as Vi ⊥⊥ Vj | Vk, and more general equality constraints,

known as Verma constraints, that resemble conditional independences albeit in post-

intervention distributions [Verma and Pearl, 1990a]. Grouped together, these are

known as equality constraints. In our earlier work [Nabi et al., 2020b], we provide
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a sound and complete algorithm that characterizes when the statistical model of an

ADMG G(V ), i.e., M(G), is nonparametric saturated; meaning M(G) imposes no

equality restrictions on p(V ). As mentioned earlier when M(G) = Mnps, then the

tangent space of the corresponding ADMG model consists of the entire Hilbert space.

In a nonparametric saturated model, there exists a single unique influence function.

Hence, the estimator that we obtain by solving E[Uψ] = 0, where Uψ is given by

Theorem 1 when T is p-fixable, is not only doubly robust but also the most efficient

estimator. On the other hand, constraints in a semiparametric model shrink the

tangent space Λ, and thus expand its orthogonal complement Λ⊥. As Λ⊥ expands,

we will have more than one influence function (note that the class of all influence

functions is {Uψ + Λ⊥}.)

In trying to achieve semiparametric efficiency bounds for our target parameter ψ(t)

under the restrictions implied by an ADMG, both ordinary and Verma constraints

must be given consideration when deriving the tangent space of the model. Among

these two kinds of equality constraints, Verma constraints are more difficult to handle

as the restrictions hold in kernels obtained after recursive fixing operations. Instead,

we identify a class of ADMGs, termed mb-shielded ADMGs, where given a topological

order τ, all equality constraints implied by the ADMG G(V ) can be written as

ordinary conditional independence statements. For the class of causal models that can

be expressed as an mb-shielded ADMG, we derive the form of the efficient influence

function under p-fixability, that takes advantage of the Markov restrictions implied on

the observed data. See [Nabi et al., 2020b] for details.
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2.2 High Dimensional Treatments

An illustrative example of a causal relationship between a high dimensional treatment

and an outcome that we will use in this section is the relationship between radiation

exposure and side effects in cancer patients undergoing radiation therapy. This

relationship is of clinical interest in radiation oncology and used to inform radiation

treatment planning. In neck and head cancers, for example, minor variations in dose

and direction of radiation may result in similar tumor reduction but vastly improve

secondary outcomes, such as weight loss, or dysfunction induced by radiation therapy,

such as dysphasia or xerostomia [Robertson et al., 2015].

Unlike standard treatments, representable by binary random variables, radiation

therapy is complicated and is represented by three dimensional voxel maps of radiation

doses in different parts of the body. Since this representation is very high dimensional,

the exact dose localization information in the voxel map is sometimes summarized by

cumulative dose-volume histograms. Even such summaries are high dimensional, and

complicate establishing a clinically relevant causal relationship between treatment and

outcomes in this setting.

Seemingly natural approaches to dimension reduction, such as principal component

analysis (PCA), are not appropriate in the setting we consider, for two reasons.

First, since we are interested in dimension reduction for the sake of explicating a

particular relationship between treatments and outcomes, approaches that do not

take outcomes into account in the right way run the risk of distorting the estimate of

this relationship, or even falsely concluding the relationship is absent. Second, causal

relationships between treatments and outcomes (regardless of whether treatments are

high dimensional) are difficult to discern due to spurious associations introduced by

confounding, which is ubiquitous in observational data sources.

In this section, we provide a framework for structural (causal) models that reduce
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dimension of a high dimensional treatment while preserving the causal relationship

of this treatment and the outcome [Nabi et al., 2020d]. Our framework is based

on a novel combination of methods from semiparametric inference, and sufficient

dimension reduction (SDR) [Li, 1991]. Our methods are appropriate in settings where

the dimension of the treatment is smaller than effective sample size, leaving open to

future work the important case of problems where treatment dimension exceeds the

sample size, and ideas from the sparsity literature will likely be required [Li, 2007].

We start by a quick overview of SDR in Section 2.2.1, before moving to our

approach to semiparametric causal SDR in Section 2.2.2. In Section 2.2.3 we describe

the estimation and implementation strategy of our estimators in more detail. We

report simulation study results in Section 2.2.4, along with a real data application

in Section 2.2.4. Our conclusions are in Section 2.3. We defer proofs of all claims to

Appendix IV.

2.2.1 Sufficient Dimension Reduction

Given an outcome variable Y and a p-dimensional covariate vector C, the goal of SDR

is to find a known function gC(.; β) parameterized by β with a much smaller range

than domain such that Y depends on C only through gC(C; β). Often this function is

assumed to be linear, in which case the goal is to find β ∈ Rp×d, where d < p, such

that Y depends on C only through CTβ. We may be interested in a stronger type of

dependence, where the conditional cumulative distribution of Y depends only on CTβ,

i.e., Pr(Y ≤ y | C) = Pr(Y ≤ y | CTβ), or a weaker type of dependence, where the

regression function for Y only depends on C through CTβ, i.e. E[Y | C] = E[Y | CTβ].

The space of matrices β for which the former type of dependence holds is called the

central subspace, while the space of matrices β for which the latter type of dependence

holds is called the central mean subspace.

There exists a rich literature on how to derive the central (mean) subspace.
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Examples include, but are not limited to, sliced inverse regression [Li, 1991], sliced

average variance estimation [Cook and Weisberg, 1991], directional regression [Li

and Wang, 2007], kernel inverse regression [Zhu and Fang, 1996], average derivative

estimation [Hardle and Stoker, 1989], nonlinear least squares [Ichimura, 1993], and

principal Hessian directions [Cook and Li, 2002]. However, all these proposed solutions

to SDR rely on strong parametric assumptions that are unlikely to hold in practical

applications, such as the linearity condition where E[C | CTβ] is assumed to be a

linear function of C, or the assumption that cov(C | CTβ) is constant rather than a

function of C. Ma and Zhu [Ma and Zhu, 2012] introduced a new approach to SDR by

recasting the problem in terms of estimation in a semiparametric model. Crucially,

this approach relies on far weaker assumptions than is typical in SDR, and is thus

much more generally applicable.

A Semiparametric Approach to SDR for the Conditional Mean

If we are interested in SDR on the mean scale, we must find a class of matrices β such

that E[Y | C] = E[Y | CTβ] is satisfied. The semiparametric approach in [Ma and

Zhu, 2012] recast this problem as a parameter estimation problem in a semiparametric

model. To obtain the relevant semiparametric model, we rewrite the above condition

as Y = ℓ(CTβ) + ϵ, where ℓ(CTβ) = E[Y | CTβ] is an unspecified smooth function,

and E[ϵ | C] = 0, while the distribution p(ϵ | C) remains otherwise unrestricted. In

this model, we are interested in estimating the set of target parameters β given the

infinite dimensional set of parameters in the nuisance models p(ϵ | C) and ℓ(CTβ).

Ma and Zhu [Ma and Zhu, 2012] derived the orthogonal complement of the nuisance

tangent space for this model as,

Λ⊥ =
{︃(︂
Y − E[Y | CTβ]

)︂
×
(︂
α(C)− E[α(C) | CTβ]

)︂}︃
, (2.7)

where α(C) is any function of C.

A well-known property of semiparametric models is that all elements of Λ⊥ are
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mean zero under the true distribution. Hence, a general class of estimating equations

can be obtained using the sample version of

E[U(β)] = E
[︃(︂
Y − E[Y | CTβ]

)︂
×
(︂
α(C)− E[α(C) | CTβ]

)︂]︃
= 0, (2.8)

where U(β) is an arbitrary element in Λ⊥. The estimator obtained by solving the

above estimating equation is doubly robust under any choice of models for E[Y | CTβ]

and E[α(C) | CTβ], meaning that the estimator remains consistent if either of these

two models is correctly specified [Ma and Zhu, 2012].

We are interested in applying SDR ideas to reducing the dimension of a treatment in

a way that preserves a causal rather than associational relationship with the outcome.

In addition, we are interested in doing so under the weakest possible assumptions,

which entails generalizing the semiparametric approach in [Ma and Zhu, 2012]. In

the remaining of this chapter, we use semiparametric inference theory developed for

marginal structural models [Robins, 1999] to give what we believe is the first approach

to causal SDR of a high dimensional treatment.

2.2.2 Causal Sufficient Dimension Reduction

We are interested in reducing the dimension of the treatment T such that the causal

relationship of T and Y is preserved. Let g(.; β) be a function parameterized by

β that takes values in Rp and map them to values in Rd, d < p, i.e., g : T ∈

Rp ↦→ g(T ; β) ∈ Rd. We want to reduce the dimension of T in such a way that the

counterfactual response E[Y (t)] only depends on T via g(t). Specifically, we assume

that if E[Y (t)] is identified, that is if E[Y (t)] is a mapping f from values t of T

to functionals ht(p(V )) of the observed data distribution, where p(V ) denotes the

joint distribution over the set of observed variables V, then f(t) = f(g(t; β)). The

methodology proposed in this section does not depend on the choice of g(.; β), although

we fix a particular g(.; β) in our data analyses. We assume a conditionally ignorable

model which includes the three identification assumptions that were discussed in
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Chapter 1; namely consistency, conditional ignorability, and positivity. Therefore,

we fix ha
(︂
p(C, T, Y )

)︂
= E

[︂
E[Y | T = t, C]

]︂
, as shown in (1.2). Extensions for other

identifying functionals for E[Y (t)] are possible but left as future work.

A Semiparametric View of Causal SDR

In Chapter 1, we described several estimation strategies for the ACE, that relied on

modeling either the outcome regression E[Y | T,C] or the propensity score p(T | C) or

both. An alternative class of estimators models the relationship between the treatment

and the outcome via a marginal structural model (MSM), or a causal regression. A

simple version of such a model takes the form E[Y (t)] = f(t; β), for finite set of

parameters β. Given such a model, inferences about E[Y (t)] reduce to inferences

about β. For binary treatments, f(t; β) can be written as β0 + βt × t without loss of

generality, with ACE = βt. A marginal structural model is different from an ordinary

regression model, since E[Y (t)] is equal to (1.2) and not E[Y | T = t] given our

causal assumptions. Therefore, one approach to estimating β is to solve a modified

set of estimating equations for regression problems appropriately reweighted by the

propensity scores

E
[︄

p∗(t)
πt(C; ˆ︁ηtr) × {Y − f(t; β)}

]︄
= 0, (2.9)

where p∗(t) is an arbitrary function of t with the same dimension as β and ˆ︁ηtr is the

maximum likelihood estimate of ηtr.

The estimation procedure for MSMs shown in (2.9) can be viewed as a standard

set of estimating equations for a regression model relating treatments and outcome,

but applied to observed data readjusted via inverse weighting in such a way that

treatment variables appear randomly assigned. In other words, MSMs are regressions

applied to a version of observed data in such a way that regression parameters can be

interpreted causally.
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A key observation is that unlike other estimating equations that solve for β by

maximizing the feature outcome relationship, the equation in (2.8) fits β to maintain

the identity E[Y | C] = E[Y | CTβ]. As a consequence, semiparametric causal SDR

can be viewed as an MSM version of this regression problem, which seeks to find β

which maintains

E
[︂
Y (t)

]︂
= E

[︂
Y (g(t; β))

]︂

In other words, in semiparametric causal SDR, our aim is to estimate β by maintaining

the following identity

E
[︃
E
[︂
Y | T = t, C

]︂]︃
= E

[︃
E
[︂
Y | g(t; β), C

]︂]︃
, (2.10)

where the outer expectation is with respect to the density p(C). To reiterate, we

view the treatment T as a single, albeit high dimensional, variable. By contrast C

may include many relevant covariates that need to be controlled for to eliminate the

confounding bias.

We note here the different roles that variables play in regression SDR and causal

SDR. The goal of regression SDR is to preserve the associative relationship between

high dimensional features C and the outcome Y. The goal of causal SDR, as we view it

here, is to preserve the causal relationship between a high dimensional treatment T and

the outcome Y, which is made complicated by the presence of spurious associations

induced by covariates C. Thus, the goal of our causal SDR procedure is not to

maintain the regression relationship between all features and the outcome by assuming

E[Y | {T,C}] = E[Y | g({T,C}; β)], but to preserve the relationship as in (2.10) where

C is marginalized (adjusted for). Note that the set of confounders C could still be

high dimensional, but they are not of primary interest in our problem. Incorporating

baseline covariates into the dimension reduction strategy along with treatments, as is

done in some MSMs, is left as an interesting avenue for future work.
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As stated earlier, our objective is to preserve the causal effect of treatment T and

outcome Y. However, it suffices to say that if the counterfactual response curve, i.e.,

E[Y (t)], is preserved under our dimensionality reduction scheme, then the causal effect

is preserved. Hence, we stated our constraint in (2.10) in terms of the counterfactual

mean rather than the counterfactual contrast that would define the effect. Moreover,

we fix T to denote the high dimensional treatment. Even though treatment is high

dimensional, we emphasize that each unit still receives one treatment. An example of

such treatment is receiving a single session of radiation therapy (with no followups).

The record of radiation treatment is usually stored as monodimensional cumulative

dose-volume histograms, and is summarized as amount of radiation on k% of the

organ’s volume, where k ranges from 1 to 100. In this example, we can think of

treatment as a vector in R100.

In a conditionally ignorable causal model, intervention on treatment T corresponds

to dropping the term p(T | C) from the observed density p(Y, T, C). Define q(Y, T, C)

as the following modified joint distributions: p(Y | T,C)× ˜︁p(T )× p(C), where ˜︁p(T )

is any density with the same support as p(T ). Then (2.10) can be rewritten as

Eq[Y | T = t] = Eq[Y | g(t; β)], (2.11)

where Eq is the expectation taken with respect to the density q(Y, T, C) defined above,

and q(Y | T ) = ∑︁
C q(Y,C | T ) = ∑︁

C p(Y | T,C)× p(C) by definition. The notation

in (2.11) makes drawing similarities between the constraints in the causal SDR and

regular SDR settings more clear.

Equations (2.10) and (2.11) are equivalent forms of our constraint in the causal

SDR problem, where the MSM model for E[Y (t)] = Eq[Y | T = t] is assumed to be

a function of the high dimensional treatment intervention t only through its lower

dimension representation g(t; β). We now describe two approaches to estimating β

that maintains the required property based on combining estimation theory of MSMs
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[Robins, 1999] and the semiparametric SDR method in [Ma and Zhu, 2012].

Inverse Probability Weighted SDR for the Counterfactual Mean

Let ℓ
(︂
g(T ; β)

)︂
≡ Eq[Y | g(T ; β)] and ν

(︂
g(T ; β)

)︂
≡ Eq[α(T ) | g(T ; β)] be two un-

specified smooth functions of g(T ; β). A simple estimation strategy for β based on

generalizing (2.9), entails solving

E
[︄

p∗(t)
p(T = t | C) ×

˜︁U(β)
]︄

= 0, (2.12)

where ˜︁U(β) =
{︂
Y − ℓ(g(t; β))

}︂
×
{︂
α(T )− ν(g(t; β))

}︂
, p∗(t) is an arbitrary function

of t, and p(T | C) is a correctly specified statistical model which governs how the

treatment T is assigned based on baseline characteristics C. The above estimation

equation may be solved using observed data by evaluating the expectation empirically.

Lemma 3. An estimator for β which solves (2.12) under the correct specification of

p(T | C), and either one of ℓ(g(T ; β)) ≡ Eq[Y | g(T ; β)] or ν(g(T ; β)) ≡ Eq[α(T ) |

g(T ; β)], is consistent.

Semiparametric Causal SDR for the Counterfactual Mean

A general approach for deriving RAL estimators of β is based on deriving ˜︁Λ⊥
η , the

orthogonal complement of the nuisance tangent space of a semiparametric model that

enforces the constraint (2.10), but places no other restrictions on the observed data

distribution. One approach is to derive this space explicitly, as was done in [Ma and

Zhu, 2012]. An alternative is to take advantage of general theory relating orthogonal

complements of regression problems, and orthogonal complements of “causal regression

problems,” or MSMs, developed by [Robins, 1999]. Given the semiparametric model

M induced by the restriction (2.10), we take advantage of this theory in the following

result.

33



Theorem 2. The orthogonal complement of the nuisance tangent space ˜︁Λ⊥
η for M

contains elements of the form

˜︁Λ⊥
η =

{︃ ˜︁U(β)
Wt(C) − ϕ(T,C) + E[ϕ(T,C) | C]

}︃
,

where ϕ(T,C) is an arbitrary function of T and C, Wt(C) is the IPW weight p(T =

t | C)/p∗(t) for a fixed p∗(t), and ˜︁U(β) is of the form

˜︁U(β) =
{︂
Y − ℓ(g(t; β))

}︂
×
{︂
α(T )− ν(g(t; β))

}︂
,

where ℓ(g(t; β)) ≡ Eq[Y | g(t; β)] and ν(g(t; β)) ≡ Eq[α(T ) | g(T ; β)]. Moreover,

the most efficient estimator in this class, for any fixed α(T ), is recovered by setting

ϕopt(T,C) = E
[︃ ˜︁U(β)
Wt(C) | T,C

]︃
.

This result also exists for multiple high dimensional treatments, using the theory

for general MSMs with multiple treatments and time-varying confounders, as described

in [Robins, 1999].

Lemma 4. For a fixed choice of α(T ) and p∗(T ), the element ˜︁U(β∗) ∈ ˜︁Λ⊥
η correspond-

ing to the optimal choice of ϕ(T,C) has the form.

p∗(T )
p(T | C) ×

˜︁U(β)− p∗(T )
p(T | C) × E

[︂ ˜︁U(β)
⃓⃓⃓
T,C

]︂
+ Eq

[︂
E
[︂ ˜︁U(β)

⃓⃓⃓
T,C

]︂⃓⃓⃓
C
]︂
, (2.13)

where Eq[.] is the expectation taken with respect to the density q(Y, T, C) ≡ p(Y |

T,C)× p∗(T )× p(C).

Robustness Properties

Just as Λ⊥
η in (2.7) entailed double robustness of U(β) for semiparametric regression

SDR, we now show that the structure of ˜︁Λ⊥
η yields additional robustness properties.

Lemma 5. If one of
{︂
p(T | C), E[ ˜︁U(β) | T,C]

}︂
and one of

{︂
ℓ(g(T ; β)) ≡ Eq[Y |

g(T ; β)], ν(g(T ; β)) ≡ Eq[α(T ) | g(T ; β)]
}︂

is correctly specified, then the estimator
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for β based on (2.13) is consistent and asymptotically normal with mean zero and

variance equal to τ−1 × Var
(︂ ˜︁U(β∗)

)︂
× τ−1′

, where ˜︁U(β∗) is given in (2.13) and τ is

defined as E[∂˜︁U(β∗)
∂β

].

This result implies that the estimating equation in (2.13) yields a “2×2” robustness

property; i.e., (2.13) relies on four nuisance models, arranged in two sets of two. Our

robustness property yields an unbiased and consistent estimator if at least one model

in each set is correctly specified. In practice, since we will be dealing with high

dimensional problems, correct specification of models is difficult to ensure. However,

robustness properties of semiparametric estimators also implies that in regions where

sufficient subset of models are approximately correct, the overall bias remains small.

Note that if p(T | C) and one of the models in ˜︁U(β) is correctly specified, the

AIPW estimator using (2.13) remains consistent for any choice of E
[︂ ˜︁U(β) | T,C

]︂
.

One promising direction of future work is to consider cases where p(T | C) and ˜︁U(β)

is known, and search for E[ ˜︁U(β) | T,C] which yields good properties of the overall

estimator. This use of the augmented IPW (AIPW) estimator is similar to that in

randomized trial data, where p(T | C) = p(T ) is known by design.

2.2.3 Estimation and Implementation

In order to estimate the parameters β in 2.11, we need to solve the estimating

equation E[ ˜︁U(β∗)] = 0, where ˜︁U(β∗) is given in (2.13). For any ˜︁U(β) of the form

given in Section 2.2.2, Theorem 2, provides the class of all RAL estimators for β∗,

which parameterizes the causal central mean subspace in an MSM model, along

with the most efficient estimator in this class. Under the general form of ˜︁U(β) ={︂
Y − ℓ(g(T ; β))

}︂
×
{︂
α(T ) − ν(g(T ; β))

}︂
, the term E

[︂ ˜︁U(β) | T,C
]︂

in ˜︁U(β∗) equals{︂
E[Y | T,C]− ℓ(g(T ; β))

}︂
×
{︂
α(T )− ν(g(T ; β))

}︂
. Hence, in the expression in (2.13),

four different models are involved in estimating ˜︁U(β∗), namely (i) p(T | C), (ii)

ℓ(g(T ; β)) ≡ Eq[Y | g(T ; β)], (iii) ν(g(T ; β)) ≡ Eq[α(T ) | g(T ; β)], and (iv) E[Y |
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T,C] = Eq[Y | T,C]. The last term in (2.13) is equal to Et
[︂
E[U(β) | T,C]

]︂
, where Et[.]

is the expectation with respect to the marginal distribution of T which is evaluated

empirically without additional modeling.

For a pre-specified functional form of ℓ(g(T ; β)), we need to fit three different

nuisance models. Given models ν(g(T ; β); ην), p(T | C; ηt), and E[Y | T,C; ηy] for

ν(g(T ; β)), p(T | C), and E[Y | T,C], respectively, it can be shown that if n 1
4 +ϵ(ˆ︁η−η0)

is bounded in probability for some ϵ > 0, then the estimating equation E[ ˜︁U(β∗); ˆ︁η]

yields an estimate of β with the same asymptotic properties as if the nuisance models

were known. Here η = {ην , ηt, ηy}, and ˆ︁η, η0 denote the estimated and the true

parameters of the nuisance models, respectively.

Theorem 3. Let ϕ0 denote the influence function of the estimator β obtained from

the estimating equation E[ ˜︁U(β∗, η0)] = 0. If n 1
4 +ϵ(ˆ︁η − η0) is bounded in probability for

some ϵ > 0, then the influence function corresponding to the estimator ˆ︁β obtained

from the estimating equation E[ ˜︁U(β∗, ˆ︁η)] = 0 is the same as ϕ0. In other words, ˆ︁β
follows the same asymptotic properties as if we knew the true nuisance models.

The condition for the rate of convergence of nuisance models in Theorem 3 is a

sufficient condition and is potentially too conservative. In practice, we might be able

to use models with the slower convergence rates, see [Fisher and Kennedy, 2018] for

more details. [Stone, 1982] provides a detailed analysis of the convergence rates of

nonparametric models.

Implementation

In this section, we describe in detail our procedure for estimating β by solving the

empirical version of the estimating equation E[ ˜︁U(β∗)] = 0, where ˜︁U(β∗) is given in

(2.13). In what follows, we assume the structural dimension d, i.e., the cardinality of

the range of g(; β), is known; later in this section we discuss methods for choosing

the structural dimension when it is not known a priori. We denote by K(.) the
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Epanechnikov kernel and let Kh(.) := 1
h
K(./h) for the choice of bandwidth h. The

d-dimensional kernel function is a product of d univariate kernel functions, i.e.,

Kh(u) = K(u/h)/hd = ∏︁d
j=1 Kh(uj) = ∏︁d

j=1 K(uj/h)/hd for u = (u1, . . . , ud). In a

slight abuse of notation, we use the same K regardless of the dimension of its argument.

Let T ∈ Rp, β ∈ Rp×d, C be the baseline vector, and Y be the outcome of interest.

For a given choice of p∗(T ) and α(T ),

1. First estimate ˆ︁ηtr and ˆ︁ηy in p(T | C; ηtr) and E[Y | T,C; ηy] by maximum

likelihood or nonparametric methods. These two models do not depend on β

and are not updated within the iterations below.

2. Pick starting values β(1).

3. At the jth iteration, given a fixed β(j), estimate ˆ︁ℓ(g(T ; β(j))) and ˆ︁ν(g(T ; β(j))),

ˆ︁ℓ(g(T ;β(j))) =
∑︁n
i=1 Yi ×Kh(g(T ;β(j))− g(Ti;β(j)))∑︁n

i=1 Kh(g(T ;β(j))− g(Ti;β(j)))
,

ˆ︁ν(g(T ;β(j))) =
∑︁n
i=1 α(Ti)×Kh(g(T ;β(j))− g(Ti;β(j)))∑︁n

i=1 Kh(g(T ;β(j))− g(Ti;β(j)))
,

and compute the following:

U q(β(j)) ≡
{︂
Y − ˆ︁ℓ(g(T ; β(j)))

}︂
×
{︂
α(T )− ˆ︁ν(g(T ; β(j)))

}︂
,

E[U q(β(j)) | T,C] ≡
{︂
E[Y | T,C; ˆ︁ηy]− ˆ︁ℓ(g(T ; β(j)))

}︂
×
{︂
α(T )− ˆ︁ν(g(T ; β(j)))

}︂
.

4. Form the sample version of E[ ˜︁U(β∗)] as follows, where Pn[.] := 1
n

∑︁n
i=1[.]i.

ζ(β(j)) = Pn

⎡⎣ p∗(T )
p(T | C; ˆ︁ηtr) ×

{︃
U q(β(j))− E

[︂
U q(β(j))

⃓⃓⃓
T,C

]︂}︃

+ Eq
[︃
E
[︂
U q(β(j))

⃓⃓⃓
T,C

]︂ ⃓⃓⃓⃓
C
]︃⎤⎦.

5. Calculate the first and second derivatives of ∂{||ζ(β)||2}/∂{vec(β)} numerically

and evaluate them at β(j), then update β(j) using the Newton-Raphson rule.

6. Repeat steps (b) through (e) until convergence.
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The implementation of the estimating equation in (2.12) follows a similar set of

steps, except all steps pertaining to second and third terms of (2.13) are skipped.

Moreover, in step (3) of the above implementation, we need to specify individual

models for ℓ(g(T ; β)) ≡ Eq[Y | g(T ; β)] and E[Y | T,C] ≡ Eq[Y | T,C]. However, due

to variation dependence of these models, it may be difficult to fit these two models in

a congenial way in general. We provide an alternative approach in the following.

Estimation of an “Inverted” Structural Nested Mean Model

In order to deal with the issue of congeniality, we may opt to specify Eq[Y | g(T ; β)] and
˜︁f(T,C, β) = Eq[Y | T,C]− Eq[Y | g(T ; β)], which yield a variationally independent

specification of Eq[Y | g(T ; β)] and Eq[Y | T,C] = Eq[Y | g(T ; β)] + ˜︁f(T,C, β).

Consequently, the four variationally independent models we need to specify are as

follows: ℓ(g(T ; β)), ν(g(T ; β)), p(T | C), and ˜︁f(T,C, β). The last term in (2.13) can

be evaluated empirically without additional modeling. In addition, we need to specify

one more nuisance model to estimate ˜︁f , which we describe below.

We fit ˜︁f by borrowing ideas from the theory of structural nested mean models

(SNMMs) in [Vansteelandt and Joffe, 2014, Robins, 1999]. Unlike MSMs, which

are regression models for causal relationships, SNMMs directly model the so called

“blip effects,” namely counterfactual differences between the response to a particular

treatment, and a response to a reference treatment, given a particular observed

trajectory. For a single treatment, this difference simplifies to γ(T,C;ψ) = E[Y (T ) |

T,C]−E[Y (0) | T,C]. Let Usn(ψ) ≡ Y −γ(T,C;ψ). Consequently, E[Usn(ψ) | T,C] =

E[Y (0) | T,C] = E[Y (0) | C] = E[Usn(ψ) | C] (by conditional ignorability). The

following estimating equation leads to a consistent estimation of parameters ψ,

E
[︂{︁
d(T,C)− E[d(T,C) | C]

}︁
×
{︁
Usn(ψ)− E[Usn(ψ) | C]

}︁]︂
= 0,

where d(T,C) is a function of T and C with the same cardinality as ψ [Vansteelandt

and Joffe, 2014]. Assuming ˜︁f is parameterized by ψ, we now show that estimating ψ
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can be viewed as an estimation problem for a kind of “inverted SNMM.”

Lemma 6. Let Udim(ψ) = Y − ˜︁f(T,C, β;ψ) and fix any d(T,C). If either E[d(T,C) |

g(T ; β)] or E[Udim(ψ) | g(T ; β)] are correctly specified, the following estimating equa-

tions yield a consistent estimator of ψ,

E
[︂{︁
d(T,C)− E[d(T,C) | g(T ;β)]

}︁
×
{︁
Udim(ψ)− E[Udim(ψ) | g(T ;β)]

}︁]︂
= 0.

For the purposes of robustness, specifying both E[ ˜︁f | g(T ; β)] and E[Udim(ψ) |

g(T ; β)] correctly is part of the correct specification of E[U(β) | T,C], given the type

of estimation strategy we use.

The implementation provided earlier can be modified to take advantage of modeling

congenial models. Right before step (c), we need to estimate ˆ︃˜︁f (j)
(︂
T,C, β(j); ˆ︁ψ)︂

using Lemma 6, and modify step (c) by letting E[U q(β(j)) | T,C] = ˆ︃˜︁f (j) ×
{︂
α(T )−

ˆ︁ν(g(T ; β(j)))
}︂
. A downside of estimating congenial models is that the overall procedure

becomes quite computationally intensive.

Choosing the Structural Dimension in Causal SDR

Up until here, we assumed the structural dimension was known a priori. Finding the

correct dimension is not an straightforward task and incorrect choices may greatly

affect performance. We adapt the technique in [Ma and Zhu, 2012] that was used

to select the structural dimension in regression SDR to causal SDR. Specifically, we

utilize a resampling procedure to select the structural dimension. This procedure

was originally described by [Dong and Li, 2010] and adapts the idea of [Ye and

Weiss, 2003]. We consider a family of functions g1(.; β1), . . . , gm(.; βm) with different

structural dimensions, and use cross-validation procedure we describe below to pick

the best dimension.

Let ˆ︁βρ be the estimate of β from the original sample for the ρth working dimension,

where ρ = 1, . . . , p−1, and let ˆ︁βρ,b be the estimate of β from the bth bootstrap sample,
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for b = 1, . . . , B. The structural dimension can be estimated by finding the dimension

ρ to be the cardinality of the range of the function

g∗ = arg max
gi

1
B

B∑︂
b=1

r2
(︂
gi(T ; ˆ︁βρ), gi(T ; ˆ︁βρ,b))︂,

where r2(u, v) = k−1∑︁k
i=1 λi and λis are the non-zero eigenvalues of

{var(u, v)}−1/2 cov(u, v) {var(v)}−1 cov(v, u) {var(u)}−1/2.

This procedure uses resampling to choose β to maximize variability of the reduced

set of features given by gi(.; βi) where gi(.; βi) is chosen in a way that aims to preserve

the causal regression relationship between T and the mean of Y . Exploring other

alternatives is an interesting area for future work.

2.2.4 Simulations and Data Analysis

We illustrate the utility of our causal SDR proposal through simulations and a real

data application in radiation oncology.

Simulation Study

Causal SDR is not well-solved via standard methods for dimension reduction such

as PCA, as they do not take the feature/outcome relationship into account, nor by

standard SDR methods, as they do not take the confounding issues into account. In this

section, we illustrate the utility of our proposal to causal SDR, via simulation studies,

and compare them with regression SDR and PCA methods. We also illustrate the

consistency of our estimators and illustrate the procedure for selecting the structural

dimension. To provide continuity with previous work, our simulation study follows

that described in [Ma and Zhu, 2012].

We perform 50 replications with fixed sample sizes, where the true response

E[Y (g(t))] is an object of dimension d = 2, and the observed data distribution

p(Y, T, C) is set as follows. The dimension of the baseline factors C is fixed as 4 and
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the observed treatment dimension p is set to be 6 and 12. The baseline factors C are

generated from a standard multivariate normal distribution. We consider two cases for

the treatment vector: one where the linearity and the constant covariance conditions

in regular SDR are violated, and one where these assumptions are satisfied.

Case 1. We generated (T1, T2)T (when p = 6) and (T1, T2, T7:12)T (when p = 12)

from a multivariate normal distribution where the mean of each component is

given as: µ1 = ∑︁
iCi, µ2 = ∑︁

i(−1)iCi, µ7 = C1, µ8 = C2, µ9 = C3, µ10 = −C1 +

C2, µ11 = −C2 +C3, µ12 = −C3 +C4, and the covariance matrix is (σij)(p−4)×(p−4)

where σij = 0.5|i−j|. We generated T3 from a normal distribution with mean

|T1 + T2| and variance |T1|. T4 has a normal distribution with mean |T1 + T2|1/2

and variance |T2|. T5 and T6 were generated from Bernoulli distributions with

success probabilities exp(T2)/{1 + exp(T2)}, and Φ(T2), respectively, where Φ(.)

denotes the standard normal cumulative distribution.

Case 2. The treatment vector is generated from a multivariate normal distribu-

tion where the mean of each component is given as follows. µ1 = ∑︁
iCi, µ2 =∑︁

i(−1)iCi, µ3 = C1 − C2 − C3 + C4, µ4 = −C1 + C2 + C3 − C4, µ5 = ∑︁
iCi −

2C3, µ6 = ∑︁
iCi − 2C1, and µ6+i = Ci, µ9+i = −Ci for i = 1, 2, 3, and the

covariance matrix is (σij)p×p where σij = 0.5|i−j|.

The response variable is generated using

Y = T Tβ1 + (T T )2β2 +
4∑︂
i=1

Ci +
{︂ p∑︂
j=1

Tj
}︂
×
{︂ 4∑︂
i=1

Ti
}︂

+ ϵ,

where T T reads as the transpose of the vector T and the error term ϵ is generated

from standard normal. For p = 6, we set β1 = (1, 1, 1, 1, 1, 1)T/
√

6, and β2 =

(1,−1, 1,−1, 1,−1)T/
√

6. For p = 12, the last 6 components of β1 and β2 are identically

zero.

As mentioned in Section 2.2.2, Theorem 2 provides the whole class of estimating

equations for a given ˜︁U(β). For simplicity, we assume E[α(T ) | g(T ; β)] = 0, and
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(a) (b)

Figure 2-2: Boxplots of Frobenius norms between true and estimated parameters in
simulations.

therefore ˜︁U(β) = {Y − ℓ(g(T ; β))} × α(T ) in the following simulations. The accuracy

of the estimates was computed using the distance between the true β, and ˆ︁β defined

as the Frobenius norm of the matrix ˆ︁β( ˆ︁βT ˆ︁β)−1 ˆ︁βT − β(βTβ)−1βT .

Simulation 1. The boxplots of estimation accuracies, with n = 200, are reported in

Fig. 2-2. The results for both Case 1 and Case 2 when p = 6 are presented in Fig. 2-2(a)

and the results for both Case 1 and Case 2 when p = 12 are presented in Fig. 2-2(b).

In each case, there are 4 different boxplots. The first one, from the left hand side,

labeled as Reg, corresponds to semiparametric SDR estimating equation (2.8). Since

regular SDR ignores the influence of confounding variables C, the estimates are not

capturing the true causal relationship between T and Y. In the second boxplot, labeled

as IPW, we use the IPW estimator in (2.12) with the correct model for p(T | C),

by properly adjusting for all the confounders. This recovers a more reasonable β∗

estimate than the first one. However, while IPW generally performs better than PCA
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Figure 2-3: Heatmaps of true causal effects and effects computed by estimating β via
the regular SDR and the AIPW estimators. Heatmaps are antidiagonally symmetric.

or regression SDR, the improvement is relatively modest. This might be due to the

inefficiency of naive IPW estimators at the reported sample size. The third plot,

labelled AIPW, uses the augmented IPW (AIPW) estimator corresponding to (2.13),

which greatly outperforms the other estimators. The last plot corresponds to the

classical PCA dimension reduction technique where the treatment-outcome relation is

ignored. In this case, the first two principal directions are reported as estimating the

basis of the lower dimensional space. As illustrated in the plots, this naive approach

does not seek to preserve a causal, nor indeed any, relationship to the outcome.

Note that our original objective was to reduce the dimension of the treatment such

that the cause-effect relation between the treatment and the outcome is preserved.

In order to show that our estimating procedures actually preserve this relation, we

compute the contrast between E[Y (g(ti; β))] and E[Y (g(tj; β))] for i, j = 1, . . . , n,

given the true parameters and the estimated ones. The n× n heatmap of effects are

provided in Fig. 2-3 for the true effects and the ones estimated by regular SDR and

AIPW. We used 500 sample points generated from Case 2 with p = 6 to plot these

heatmaps. The plots in 2-3(a) and (c) demonstrates the significant similarity between

the true surface and the one estimated by AIPW. The surface estimated by regression

SDR appears to be a very different surface. The root-mean-squared errors between

the true causal surface and the ones estimated from AIPW and regular regression
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SDR are 0.48 and 14.29, respectively.

Simulation 2. We now illustrate the performance of the bootstrap procedure for

estimating the structural dimension d. We use the same data generating process as

in Simulation 1, with p = 6, and n = 200. We set the bootstrap size to B = 50. The

relative frequency of the selected dimension are reported in Table 2-I. The bootstrap

procedure reliably recovers the true structural dimension, namely 2.

Table 2-I: Choosing the structural dimension in Causal SDR

Model (p = 6) d̂ = 1 d̂ = 2 d̂ = 3 d̂ = 4 d̂ = 5
Case 1 0% 98% 2% 0% 0%
Case 2 0% 90% 10% 0% 0%

Simulation 3. In the third set of simulations, we demonstrate the effect of sample

size on IPW and AIPW estimators of β in the causal SDR model. Results are shown

in Fig. 2-4. While both estimators are consistent under our model specification, AIPW

exhibits favorable convergence rates compared to IPW, as expected.

Real Data Application

We now illustrate our methods using a cohort of patients treated with radiation therapy

for head and neck cancer. The cohort consists of 613 patients who received radiation

therapy at the Johns Hopkins hospital prior to 2016. Radiation therapy is one of

the most effective modalities for the treatment of head and neck cancers. However,

because of the complex shape of target volumes in close proximity to sensitive organs,

it may be associated with acute and late radiation morbidities such as xerostomia,

mucositis, and dysphagia affecting the patient’s quality of life. Such morbidities can

lead to severe reduction in food intake and undesirable and possibly dangerous weight

loss in patients. There are prospective studies that evaluated risk factors for weight

loss in patients who undergo radiation therapy [Johnston et al., 1982, Cacicedo et al.,

2014]. However, a proper analysis of whether radiation causes weight loss has not
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Figure 2-4: Illustration of the effect of sample size on the Frobenius norms between
true and estimated parameters using data generated from Case 2 with p = 6.

yet been reported likely due to the methodological challenges involved in using high

dimensional variables such as radiation therapy as a treatment in causal analysis.

In our data analysis, we focus on the parotid glands which are incidentally irradiated

by radiation and examine the summary measures of radiation therapy given by the

cumulative dose-volume histograms extracted from the raw voxel maps of radiation

doses. In particular, we looked at 5 equally spaced percentages of volume to construct

a vector of treatment doses. We used weight loss as the outcome of interest, which

was defined as the difference between weight measured within 100 to 160 days after

the completion of treatment and the weight measured during consultation before

the start of treatment. The data has records on demographics such as age, gender,
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Figure 2-5: Heatmaps to illustrate the causal effect of radiation on weight loss, where
effects are computed by estimating β via (a) IPW estimator, and (b) AIPW estimator.
Heatmaps are antidiagonally symmetric with opposite color tones.

race, and baseline clinical factors such as whether the patient had used feeding tubes

and/or received chemotherapy before the RT initiation. We assumed these variables

are sufficient to control for confounding and therefore would ensure the conditional

ignorability assumption was met.

There exists a rich literature relating parotid dose-volume characteristics to

radiotherapy-induced salivary toxicity. It has been shown that the mean dose to

the parotid glands correlates strongly with xerostomia and salivary dysfunction which

are risk factors of weight loss [Deasy et al., 2010]. In light of such studies, we assume

there exists a single dimension in the radiation exposure that captures the relation-

ships between exposure and side effects including weight loss. Therefore, we set the

structural dimension d to be one. We set the mapping function g(.; β) to be linear in

its parameters β, and use Bayesian additive regression trees to fit all nuisance models.

We generated n× n heatmaps in Fig. 2-5 to illustrate the cause-effect relationship

between radiation treatment and weight loss. On the left panel, we use IPW estimator

in (2.12) to estimate the parameters β. On the right panel, we use AIPW estimator

obtained from Theorem 2. The absolute values on the plots are antidiagonally
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symmetric. Radiation doses were sorted in increasing values along both axes. We

interpret the heatmaps as follows. Consider the (i, i)th point on the plot and draw

a line along the y-coordinate. Since radiation doses were sorted in increasing order,

then the radiation value at any point on the line to the right of (i, i) is higher

than the radiation value at the (i, i)th point. For any point to the left of (i, i), the

radiation value is lower. The value at the (k, i)th coordinate corresponds to the contrast

E
[︂
Y (g(ak; β))−Y (g(ai; β))

]︂
. Consequently, if k > i, then a red dot at (k, i) coordinate

implies that an increase in radiation doses leads to an increase in weight loss. On the

other hand, a blue dot would imply that an increase in radiation doses would not lead

to an increase in weight loss. Similarly, a blue dot at (k, i), for k < i, would imply

that a decrease in radiation leads to a decrease in weight loss. Reverse is implied when

the dot is red.

According to Fig. 2-5, the computed effects using IPW and AIPW agree in most

regions of the heatmaps. Focusing on the bottom right triangle, the one below the

anti-diagonal, we note that most of the area is filled with red color. It implies that as

we increase the amount of radiation, the severity of weight loss increases. In other

words, radiation therapy is potentially a cause of weight loss in patients who undergo

radiation therapy. In general, AIPW estimator is preferred over IPW estimator due

to its doubly robust characterization and efficiency gains.

We investigated the relationship between the treatment and outcome as the

treatment size increases by selecting larger numbers of equally spaced percentages

of volume in the dose-volume histograms. The plots are provided in Appendix IV.

Throughout the analysis, we used a crude summary of the treatment that itself had

dimension greater than one. A more fine-tuned approach is to look at the raw voxel

maps. A voxel-based approach would identify the relations between radiation-induced

morbidity and local dose release, thus providing a potentially better insight into

spatial signature of radiation sensitivity in composite regions like the head and neck
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district [Monti et al., 2017]. Given the small cohort of patients that we have access

to, a voxel-based approach would fall into p≫ n paradigm, and would require strong

sparsity assumptions to deal with. This is an interesting and challenging direction for

future work.

2.3 Conclusions

In the first section, we bridged the gap between identification and estimation theory

for the causal effect of a single treatment on a single outcome in hidden variable causal

models associated with directed acyclic graphs (DAGs). We provided a simple graphical

criterion, primal fixability, which when satisfied allows for the derivation of two novel

IPW estimators – primal and dual IPW. We further derived the nonparametric

influence function under p-fixability of the treatment that yields the augmented primal

IPW estimator and showed that it is doubly robust in the models used in primal and

dual IPW estimators. We considered restrictions on the tangent space implied by

the latent projection acyclic directed mixed graph (ADMG) of the hidden variable

causal model. In [Nabi et al., 2020b], we provide an algorithm that is sound and

complete for the purposes of checking the nonparametric saturation status of a hidden

variable causal model as long these hidden variables are unrestricted. Further, through

the use of mb-shielded ADMGs, we provide a graphical criterion that defines a class

of hidden variable causal models whose score restrictions resemble those of a DAG

with no hidden variables. For the class of causal models that can be expressed as an

mb-shielded ADMG, we then derive the form of the efficient influence function under

p-fixability, that takes advantage of the Markov restrictions implied on the observed

data. These results are completely generic and may be used to derive the efficient

version of any nonparametric influence function in the model with these restrictions.

In the second section, we have described a generalization of the semiparametric

sufficient dimension reduction (SDR) approach for regression problems described in
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[Ma and Zhu, 2012] to causal SDR. Specifically, we developed a method that reduces

the dimension of a high dimensional treatment, while preserving the causal relationship

between the treatment and the outcome quantified as a counterfactual mean. Using

ideas from structural models [Robins, 1999], we provided semiparametric estimators

for parameters of the function that maps the high dimensional treatment to a lower

dimensional subspace. We have shown our estimator exhibits “2x2 robustness,” where

the estimator remains consistent if one of two models, for two pairs of models, is chosen

correctly. In order to scale our methods to high dimensional applied settings, such

as fMRI scans, text data, or radiation oncology voxel data, we need to incorporate

ideas from parametric modeling, and sparsity within a semiparametric framework. In

prior work, we proposed an approach to trading off interpretability and performance

in prediction models using our ideas on sufficient dimensionality reduction [Sani et al.,

2020]. Another natural extension for future work is to apply these methods to classical

causal inference in longitudinal studies, where multiple time points render a collection

of binary treatments a high dimensional object. Our causal SDR approach would

provide an alternative to parametric marginal structural models typically employed in

such settings.
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Chapter 3

A Causal View of Algorithmic
Fairness

With the proliferation of comprehensive databases and advancements in artificial

intelligence (AI) and machine learning (ML) algorithms, highly impactful decisions are

increasingly being automated. Amongst the exciting achievements in ML, there are

arising concerns regarding stereotyping and unfair determinations that are present in

every corner of AI. ML predictive algorithms have been used in sentencing and parole

decisions [Angwin et al., 2016, Barry-Jester et al., 2015], in child welfare services

[Roberts, 2002], in evaluating personal loan applications and insurance [Gaulding,

1995, Petrasic et al., 2017], and as a job applicant screening tool by firms [Miller,

2015].

The fuel of automated decision-making is data, and in order to build an effective

intelligent machine, we need as much relevant information as possible. Data may well

include sensitive features, such as race and gender, that must be treated with care

due to the risk of enabling discrimination. Even in the absence of such variables in

individual data, other features may be present that are highly correlated with sensitive

features, and so even decisions based on data which has no variables corresponding to

(e.g.) race or gender may exhibit significant disparities along these dimensions. For

example, an individual’s zip code is a very effective proxy for race in racially segregated
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communities and decisions informed by algorithms that use zip code information may

thereby introduce (or reproduce) significant racial disparities [L. and I., 2016].

Why are unjust disparities potential byproducts of learning algorithms? ML

algorithms use training data to learn a function that maps the input to the output by

finding patterns in the training data. However, data can sometimes reflect historical

patterns of discrimination, bias, and/or inequality due to the way data are collected

and stored, the way important variables are defined, or the way hypotheses are framed.

As an example, in criminal justice settings recidivism is often defined as a subsequent

arrest rather than subsequent conviction. This can have substantial consequences for

judicial decisions given background policing practices. Similarly, features such as prior

compensation and employment history in resume screenings may be heterogeneous

across genders and other traits. There is no information in the data to indicate

whether heterogeneity of this type may be due to unfair differences in treatment of

these groups.

Consequently, learning algorithms that rely on data from our unfair world can lead

to biased or unfair conclusions, and using the output of such algorithms may serve

to perpetuate systemic injustice. To break this cycle, three methodological questions

must be answered. First, how should fairness principles be expressed mathematically,

such that these requirements may be productively combined with the statistical models

and algorithms used to inform crucial decisions? Second, how can learning algorithms

be modified such that they produce fair outputs, even when their input training

data comes from an unfair world? Third, how should we use the fair model on new

instances?

The core part of our proposal is to leverage the formal language of causal modeling to

mathematically specify fairness constraints and prevent algorithms from perpetuating

unfairness by means of causal inference methodology and constrained optimization.

We view fairness as an inherently causal notion and characterize the presence of
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unfairness based on a sensitive feature, like race or gender, with respect to an outcome

of interest, as the presence of an effect of the sensitive feature on the outcome along

unfair causal pathways. In other words, we propose to model unfairness based on

a sensitive feature with respect to an outcome as the presence of an effect of the

feature on the outcome along certain impermissible causal pathways. We divide this

chapter into two sections. In the first section, we consider the problem of making fair

predictions [Nabi and Shpitser, 2018, Nabi et al., 2020c]. In the second section, we

consider how to extend learning fair predictions to learning fair policies [Nabi et al.,

2019].

3.1 Training Fair Predictive Models

Predictive models trained on imperfect data are increasingly being used in socially-

impactful settings. Predictions (such as risk scores) have been used to inform high-

stakes decisions in criminal justice [Perry et al., 2013], healthcare [Kappen et al., 2018],

and finance [Khandani et al., 2010]. While automation may bring many potential

benefits – such as speed and accuracy – it is also fraught with risks. Predictive models

introduce two dangers in particular: the illusion of objectivity and violation of fairness

norms. Predictive models may appear to be “neutral,” since humans are less involved

and because they are products of a seemingly impartial optimization process. However,

predictive models are trained on data that reflects the structural inequities, historical

disparities, and other imperfections of our society. A particular worry in the context

of data-driven decision-making is “perpetuating injustice,” which occurs when unfair

dependence between sensitive features (e.g., race, gender, age, disability status) and

outcomes is maintained, introduced, or reinforced by automated tools.

In this section, we study how to construct fair predictive models by correcting

for the unfair causal dependence of predicted outcomes on sensitive features [Nabi

and Shpitser, 2018]. We propose to model unfairness based on a sensitive feature,
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such as race or gender, with respect to an outcome as the presence of an effect of

the feature on the outcome along certain “disallowed” causal pathways. As a simple

example, discussed in [Pearl, 2009], job applicants’ gender should not directly influence

the hiring decision, but may influence the hiring decision indirectly, via secondary

applicant characteristics important for the job, and correlated with gender. We argue

that fair prediction requires imposing hard constraints on the predictive model in

the form of restricting certain causal path-specific effects. This view captures a

number of intuitive properties of unfairness, and generalizes existing formal [Pearl,

2009, Zhang et al., 2017] and informal proposals [Bertrand and Mullainathan, 2004].

Impermissible pathways are user-specified and context-specific, hence require input

from policymakers, legal experts, or the general public. Some alternative but also

causally-motivated constrained prediction methods are proposed in [Kusner et al.,

2017, Zhang and Bareinboim, 2018]. For a survey and discussion of distinct fairness

criteria (both causal and associative) see [Mitchell et al., 2018].

This section is organized as follows. We first give a brief introduction to mediation

and path-specific effects, which will be necessary to formally define our approach to

fair inference. We then formalize unfairness with respect to the sensitive feature and

the outcome in terms of unfair path-specific effects. Moving forward, we show that

fair inference from finite samples under our definition can be viewed as a certain type

of constrained optimization problem, and discuss a number of complications to the

basic framework of fair inference. We illustrate our framework via experiments on real

datasets in the experimental section.

3.1.1 Mediation and Path-Specific Effects

In causal inference, we might be interested in understanding the mechanisms by which

some treatment T influences some outcome Y. A common framework for studying

mechanisms is known as mediation analysis which seeks to decompose the effect of T
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on Y into the direct effect and the indirect effect mediated by a third variable, or more

generally into components associated with particular causal pathways. As an example,

the direct effect of T on Y in Fig. 1-1(a) corresponds to the effect along the edge

T → Y and the indirect effect corresponds to the effect along the path T →M → Y,

mediated by the variable M.

In the potential outcome notation, the direct and indirect effects can be defined

using nested counterfactuals, such as Y (t,M(t′)) for t, t′ ∈ XT , which reads as the

potential outcome Y when T is set to t while M is set to whatever value it would have

attained had T been set to t′. The natural direct effect (NDE) (on the expectation

difference scale) is defined as E[Y (t,M(t′))]− E[Y (t′)] and the natural indirect effect

(NID) is defined as E[Y (t)]− E[Y (t,M(t′))]. Under certain identification assumptions

discussed in [Pearl, 2001], the distribution of Y (t,M(t′)) (and thereby direct and

indirect effects) can be nonparametrically identified from observed data by the following

formula:

p(Y (t,M(t′)) =
∑︂
C,M

p(Y | T = t, C,M)× p(M | T = t′, C)× p(C).

More generally, when there are multiple proper pathways from T to Y (a proper

causal path only intersects T at the source node) one may define various path-specific

effects (PSEs). The effect along a specific path will be obtained by comparing two

potential outcomes, one where for the selected paths all nodes behave as if T = t, and

along all other paths nodes behave as if T = t′.

PSEs are defined by means of nested path-specific potential outcomes. Fix a set

of treatment variables T, and a subset of proper causal paths π from any element in

T. Next, pick a pair of value sets t and t′ for elements in T. For any Vi ∈ V, define

the potential outcome Vi(π, t, t′) by setting T to t for the purposes of paths in π, and

to t′ for the purposes of proper causal paths from T to Y not in π. Formally, for any
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Vi ∈ V , Vi(π, t, t′) ≡ a if Vi ∈ T, otherwise

Vi(π, t, t′) ≡Vi
(︃{︂
Vj(π, t, t′) | Vj ∈ paπG(Vi)

}︂
,
{︂
Vj(t′) | Vj ∈ paπG(Vi)

}︂)︃
, (3.1)

where Vj(t′) ≡ t′ if Vj ∈ T and given by recursive substitution otherwise, paπG(Vi) is

the set of parents of Vi along an edge which is a part of a path in π, and paπG(Vi) is

the set of all other parents of Vi.

A counterfactual Vi(π, t, t′) is said to be edge inconsistent if counterfactuals of

the form Vj(tk, . . .) and Vj(t′k, . . .) occur in Vi(π, t, t′), otherwise it is said to be edge

consistent. It is known that a joint distribution p(V (π, t, t′)) containing an edge-

inconsistent counterfactual Vi(π, t, t′) is not identified in the structural causal model

(nor weaker causal models) with a corresponding graphical criterion on π and G(V )

called the “recanting witness" [Shpitser, 2013, Shpitser and Tchetgen Tchetgen, 2016].

Under some assumptions, PSEs are nonparametrically identified by means of the edge

g-formula described in [Shpitser and Tchetgen Tchetgen, 2016].

Example 3.1. As an example, consider the DAG in Fig. 3-1(a). The PSE of T on Y

along the paths π = {T → Y, T → L→ Y } is encoded by a counterfactual contrast

of the form Y (π, t, t′) = Y (t,M(t′), L(t,M(t′))). The corresponding counterfactual

density is identified by a special case of the edge g-formula as follows:

p(Y (t,M(t′), L(t,M(t′)))

=
∑︂
C,M,L

p(Y | T = t, C,M)× p(L | T = t,M,C)× p(M | T = t′, C)× p(C).

3.1.2 Unfair Path-Specific Effects

A common class of approaches for fair inference is to quantify fairness via an associative

(rather than causal) relationship between the sensitive feature S and the outcome Y.

One difficulty with non-causal formalization of fairness, as in [Feldman et al., 2015,

Hardt et al., 2016], is their inability to distinguish appropriate from inappropriate
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Figure 3-1: (a) A causal graph with two mediators, one confounded with the outcome
via an unobserved common cause. (b) A causal graph with a single mediator where
the natural direct effect is not identified. Unmeasured confounders are denoted by U.

sources of association. As an example, direct use of a sensitive feature such as race

is discriminatory, while denial of services based on a strong proxy for a sensitive

feature, such as geographic location, is a form of redlining. However, the use of certain

non-sensitive features may be justified, even if they are correlated with a sensitive

feature. The associative measures of fairness have difficulties distinguishing these

cases. Further, these associative criteria are not easily adaptable to use context-specific

information, and they oftentimes are tailored to only classification problems. On the

other hand, our causal view to algorithmic fairness takes into account the mechanisms

through which variables are related which leads to interesting methodological problems.

Consider a hiring example where potential discrimination is with respect to sex (a

variable randomized at conception, which means worries about confounding are no

longer relevant). As before, consider binary variables S and H for sex and hiring, and

an additional vector M, representing applicant characteristics relevant for the job, of

the kind that would appear on the resume. One might argue that it is legitimate to

consider job characteristics in making hiring decisions even if those characteristics

are correlated with sex. However, it is not legitimate to consider sex directly. This

intuition underscores resume “name-swapping” experiments where identical resumes

are sent for review with names switched from a male sounding name to a female

sounding name [Bertrand and Mullainathan, 2004]. In such experiments, name serves

as a proxy for sex as a direct determinant of the hiring decision.
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The definition of (un)fairness as related to causal pathways is further supported

in the legal literature. The following definition of employment discrimination, which

appeared in the legal literature [7th Circuit Court, 1996] and was cited by [Pearl,

2009], makes clear the counterfactual nature of our conception of fairness:

The central question in any employment-discrimination case is whether

the employer would have taken the same action had the employee been

of a different race (age, sex, religion, national origin etc.) and everything

else had been the same.

The counterfactual “had the employee been of a different sex” phrase entails considering,

for women, the outcome Y had sex been male S = 1, while the “everything else had

been the same” phrase entails considering job characteristics under the original gender

S = 0. The resulting counterfactual Y (S = 1,M(S = 0)) is precisely the one used in

mediation analysis to define natural direct effects.

It is possible to construct examples, discussed further, where some causal pathways

from a sensitive variable to the outcome are impermissible and unfair, and others are

not. Thus, our view is that unfairness ought to be formalized as the presence of certain

path-specific effects. The specific paths which correspond to unfairness are a domain

specific issue. For example, physical fitness tests may be appropriate to administer for

certain physically demanding jobs, e.g., construction, but not for white-collar jobs,

such as accounting. As a result, a path from sex to the result of a test to a hiring

decision may or may not be (un)fair, depending on the nature of the job.

Non-Identification of the PSE

Suppose our problem entailed the causal model in Fig. 3-1 (a) or (b) where in both

cases only the NDE of T on Y is unfair. Existing identification results for PSEs

[Shpitser, 2013] imply that the NDE is not identified in either model. This means
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estimation of the NDE from observed data is not possible as the NDE is not a function

of the observed data distribution in either model.

In such cases, three approaches are possible. In both cases, the unobserved

confounders U are responsible for the lack of identification. If it were possible to

obtain data on these variables, or obtain reliable proxies for them, the NDE becomes

identifiable in both cases. If measuring U is not possible, a second alternative is to

consider a PSE that is identified, and that includes the paths in the PSE of interest

and other paths. For example, in Fig. 3-1 (a), while the NDE of T on Y, which is the

PSE including only the path T → Y, is not identified, the PSE which includes paths

T → Y, T →M → Y, and T →M → L→ Y.

If we are using the PSE on the mean difference scale, the magnitude of the effect

which includes more paths than the PSE we are interested in must be an upper bound

on the magnitude of the PSE of interest in order for the bounds we impose to actually

limit unfairness. This is only possible if, for instance, all causal influence of T on Y

along paths involved in the PSE are of the same sign. In Fig. 3-1 (a), this would mean

assuming that if we expect the NDE of T on Y to be negative (due to unfairness),

then it is also negative along the paths T →M → L→ Y, and T →M → Y.

If measuring U is impossible, and it is not possible to find an identifiable PSE that

includes the paths of interest from T to Y and serves as a useful upper bound to the

PSE of interest, the other alternative is to use bounds derived for non-identifiable

PSEs. While finding such bounds is an open problem in general, they were derived in

the context of the NDE with a discrete mediator in [Miles et al., 2016].

The issue with non-identification of the PSE was also noted in [Zhang et al., 2017].

They proposed to change the causal model, specifically by cutting off some paths

from the sensitive variable to the outcome such that the identification criterion in

[Shpitser, 2013] became satisfied, and the PSE became identified. We disagree with

this approach, as we believe it amounts to “redefining success.” If the original causal
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model truly represents our beliefs about the structure of the problem, and in particular

the pathways corresponding to discrimination, then making any sort of inferences in

a model modified away from truth no longer tracks reality. We would certainly not

expect any kind of repair within a modified model to result in fair inferences in the

real world. The workarounds for non-identification we propose aim to stay within

the true model, but try to obtain information on the true non-identified PSE, either

by non-parametric bounds, or by including other pathways along with the “unfair”

pathways.

3.1.3 Constraining Unfair Path-Specific Effects

Consider an observed data distribution p(Z) induced by a causal model, where

Z = {Y,C, S,M} includes outcome Y , all baseline factors C, sensitive features S, and

mediators M between S and Y. Context and background ethical considerations pick

out some path-specific effect of the sensitive feature S on the outcome Y as unfair. We

assume this effect is identified as some function of the observed distribution: g(pZ).

Fix upper and lower bounds ϵl, ϵu for the PSE, representing a tolerable range. The

most relevant bounds in practice are ϵl = ϵu = 0 or approximately zero. We propose

to transform the inference problem on p(Z), the “unfair world,” into an inference

problem on another distribution p∗(Z), called the “fair world,” which is close in the

sense of minimal KL-divergence to p(Z) while also having the property that the PSE

lies within (ϵl, ϵu) [Nabi and Shpitser, 2018].

Given a dataset D = {Zi = (Yi, Ci, Si,Mi), i = 1, . . . , n} drawn from p(Z), a

likelihood function L(D;α) parameterized by α, an estimator ˆ︁g(pZ) of the unfair

PSE, and bounds ϵl, ϵu, we suggest to approximate p∗(Z) by solving the following

constrained maximum likelihood problem [Nabi and Shpitser, 2018]:

ˆ︁α = arg max
α
LZ(D;α) subject to ϵl ≤ ˆ︁g(pZ) ≤ ϵu. (3.2)
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Having approximated the fair world p∗(Z; ˆ︁α) in this way, we point out a key

difficulty for using these estimated parameters to predict outcomes for new instances

(e.g., new job applicants). A new set of observations Z is not sampled from the “fair

world" p∗(Z) but from “unfair world" p(Z). Here, we propose to map new instances

from p to p∗ and use the result for predicting Y with constrained model parameters ˆ︁α.
We assume Z can be partitioned into Z1 and Z2 such that p∗(Z) = p∗(Z1 | Z2)×p(Z2).

In other words, variables in Z2 are shared between p and p∗, i.e., p∗(Z2) = p(Z2), but

p∗(Z1 | Z2) ̸= p(Z1 | Z2). Z1 typically corresponds to variables that appear in the

estimator ˆ︁g(pZ). There is no obvious principled way of knowing exactly what values of

Z1 the “fair version" of the new instance would attain. Consequently, all such possible

values are averaged out, weighted appropriately by how likely they are according to

the estimated p∗. This entails predicting Y as the expected value E∗[Y | Z2], with

respect to the distribution ∑︁Z1 p
∗(Y, Z1 | Z2).

The optimization problem in (3.2) involves complex non-linear constraints on the

parameter space. This makes the proposed constrained optimization a daunting task

that relies on complex optimization software (or computationally expensive methods

such as rejection sampling), which do not always find high quality local optima.

In [Nabi et al., 2020c], we provide a novel reparameterization of the observed data

likelihood in which unfair path-specific effects appear directly as parameters. This

allows us to greatly simplify the constrained optimization problem.

Fair Inference via Reparameterized Likelihoods

We now describe how to reparameterize the observed data likelihood in terms of

causal parameters that correspond to path-specific effects. The result presented in

the following theorem greatly simplifies the constrained optimization problem (3.2) in

settings where the PSE includes the direct influence of S on Y. This is due to the fact

that the constrained parameter, corresponding to the PSE of interest, now appears as
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a single coefficient in the outcome regression model.

Theorem 4. Assume the observed data distribution p(Z) is induced by a causal model

where Z = {Y,X} denotes the observed data and X := {C, S,M} includes baseline

measures C, binary sensitive feature S, and a set of mediators M, between S and Y. Let

p(Y (π, s, s′)) denote the potential outcome distribution that corresponds to the effect

of S on Y along unfair causal paths in π, where π includes the direct edge S → Y, and

let p(Y0(π, s, s′)) denote the identifying functional for p(Y (π, s, s′)) obtained from the

edge g-formula, where the term p(Y | X) is evaluated at {X \ S} = 0. Then E[Y | X]

can be written as follows:

E[Y | X] = f(X)−
(︂
E[Y (π, s, s′)]− E[Y0(π, s, s′)]

)︂
+ ϕ(S),

where f(X) := E[Y | X]− E[Y | S, {X \ S} = 0] and ϕ(S) = w0 + wsS. Furthermore,

ws corresponds to π-specific effect of S on Y.

Given Theorem 4, the constrained optimization problem in eq. (3.2) significantly

simplifies to the following optimization problem:

ˆ︁α = arg max
α
LZ(D;α) subject to ϵl ≤ ws ≤ ϵu, (3.3)

where α contains ws and the nonlinear constraint has been replaced by a box-constraint

on the parameter ws.

Furthermore, in the optimization problem in (3.2), we propose to constrain only part

of the likelihood. Specifically we do not constrain the density p(C) over the baseline

features (since this is high-dimensional and thus inplausible to model accurately in

their parametric approach). The baseline density is instead estimated by placing 1/n

mass at every observed data point. This is sub-optimal in the specific setting we

consider, where we do not need to average over constrained variables. Constraining a

larger part of the joint distribution should lead to a fair world distribution KL-closer

to the observed distribution, which leads to better predictive performance as long
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as the likelihood is correctly specified. In [Nabi et al., 2020c], we demonstrate how

tools from the empirical likelihood literature [Owen, 2001] can be readily adapted to

construct hybrid (semiparametric) observed data likelihoods that satisfy given fairness

criteria. With this approach, the entire likelihood is constrained, rather than only

part of the likelihood as proposed above. As a result, we are able to use the data more

efficiently and achieve better performance.

Fair Inference with Computational Bayesian Methods

Methods for fair inference described so far are fundamentally frequentist in character,

in a sense that they assumed a particular true parameter value, and parameter fitting

was constrained in a way that an estimate of this parameter was within specified

bounds. Here, we do not extend our approach to a fully Bayesian setting, where we

would update distributions over causal parameters based on data, and use the resulting

posterior distributions for constraining inferences. Instead, we consider how Bayesian

methods for estimating conditional densities can be adapted, as a computational tool,

to our frequentist approach.

Many Bayesian methods do not compute a posterior distribution explicitly, but

instead sample the posterior using Markov chain Monte Carlo approaches [Metropolis

et al., 1953]. These sampling methods can be used to compute any function of the

posterior distribution, including conditional expectations, and can be modified to

obey constraints in our problem in a straightforward way. As an example, we consider

BART, a popular Bayesian random forest method described in [Chipman et al., 2010].

This method constructs a distribution over a forest of regression trees, with a prior

that favors small trees, and samples the posterior using a variant of Gibbs sampling,

where a new tree is chosen while all others are held fixed. A well known result [Gelfand

et al., 1992] states that a Gibbs sampler will generate samples from a constrained

posterior directly if it rejects all draws that violate the constraint. We implemented
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this simple method by modifying the R package (with a C++ backend) BayesTree.

The experiment using the resulting constrained outcome model is described in the

next section.

3.1.4 Data Analyses

We now illustrate our approach to fair inference via two datasets: the COMPAS

dataset [Angwin et al., 2016] and the Adult dataset [Lichman, 2013].

The COMPAS Dataset

COMPAS is a risk assessment tool that is being used across courts in the US to

determine whether to release or detain a defendant before their trial. Each pretrial

defendant receives several COMPAS scores based on factors including but not limited

to demographics, criminal history, family history, and social status. Among these

scores, we are primarily interested in “Risk of Recidivism.” Propublica [Angwin et al.,

2016] has obtained two years worth of COMPAS scores from the Broward County

Sheriff’s Office in Florida that contains scores for over 11000 people who were assessed

at the pretrial stage and scored in 2013 and 2014. COMPAS score for each defendant

ranges from 1 to 10, with 10 being the highest risk. Besides the COMPAS score, the

data also includes records on defendant’s age, sex, race, prior convictions, and whether

or not recidivism occurred in a span of two years. We limited our attention to the

cohort consisting of African Americans and Caucasians.

We are interested in predicting whether a defendant would reoffend using the

COMPAS data. For illustration, we assume the use of prior convictions, possibly

influenced by race, is fair for determining recidivism. Thus, we defined unfairness

as effect along the direct path from race to the recidivism prediction outcome. The

simplified causal graph model for this task is given in Figure 3-2 (a), where S denotes

race, prior convictions is the mediator M, demographic information such as age and
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Figure 3-2: Causal graphs for (a) the COMPAS dataset, and (b) the Adult dataset.

sex are collected in C, and Y is recidivism. The disallowed path in this problem is

drawn in green in Figure 3-2(a). The effect along this path is the NDE. The objective

is to learn a fair model for Y, i.e., a model where NDE is minimized.

We obtained the posterior sample representation of E[Y | S,M,C] via both regular

and constrained BART. Under the unconstrained posterior, the NDE (on the odds

ratio scale) was equal to 1.3(1.01, 1.45). This number is interpreted to mean that the

odds of recidivism for Caucasians (on average) would have been 1.3 times higher had

they, contrary to the fact, been African American. In our experiment, we restricted

NDE to lie between 0.95 and 1.05. Using unconstrained BART, our prediction accuracy

on the test set was 67.8%, removing treatment from the outcome model dropped the

accuracy to 64.0%, and using constrained BART led to the accuracy of 66.4%. As

expected, dropping race led to a greater decrease in accuracy, compared to simply

constraining the outcome model to obey the constraint on the NDE.

In addition to our approach to removing unfair NDE, we are also interested in

assessing the extent to which the existing COMPAS recidivism classifier is biased.

Unfortunately, we do not have access to the exact model which generated COMPAS

scores, since it is proprietary, nor all the input features used. Instead, we used our

dataset to predict a binarized COMPAS score by fitting the model p̃(Y |M,C) using

BART. We dropped race, as we know the COMPAS tool does not use that feature.

Unfairness, as we defined it, may still be present even if we drop race. To assess this,
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we estimate the NDE, our measure of unfairness, in the semiparametric model of

p(Y,M, S, C), where the only constraint is that p(Y |M,C) is equal to p̃ above. This

model corresponds to (our approximation of) the “world” used in the COMPAS tool.

Measuring the NDE on the odds ratio scale using this model yielded 2.1(2.06, 2.40),

which is far from 1 (the null effect value). In other words, assuming the defendant

is Caucasian, then the odds of recidivism would be 2.1 times higher had they been,

contrary to fact, African American. Thus, our best guess on the model used in the

COMPAS tool is that it is severely unbiased against African Americans.

The Adult Dataset

The adult dataset from the UCI repository has records on 14 attributes such as demo-

graphic information, level of education, and job related variables such as occupation

and work class on 48842 instances along with their income that is recorded as a binary

variable denoting whether individuals have income above or below 50k – high vs low

income. The objective is to learn a statistical model that predicts the class of income

for a given individual. Suppose banks are interested in using this model to identify

reliable candidates for loan application. Raw use of data might construct models that

are biased against females who are perceived to have lower income in general compared

to males. The causal model for this dataset is drawn in Figure 3-2(b). Gender is

the sensitive variable in this example denoted by S in figure 3-2(b) and income class

is denoted by Y. M denotes the marital status, L is the level of education, and R

consists of three variables, occupation, hours per week, and work class. The baseline

variables including age and nationality are collected in C. U1 and U2 capture the

unobserved confounders between M,Y and L,R, respectively.

Here, besides the direct effect (S → Y ), we would like to remove the effect

of sex on income through marital status (S → M → . . . → Y ). The disallowed

paths are drawn in green in Figure 3-2(b). The PSE along the green paths is
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identifiable via the recanting district criterion in [Shpitser, 2013], and can be com-

puted by calculating odds ratio or contrast comparison of the counterfactual variable

Y (s,M(s), L(s′,M(s)), R(s′,M(s), L(s′,M(s))), C), where s′ is set to a baseline value,

s = 1 in one counterfactual, and s = 0 in the other. The counterfactual distribution

can be estimated from the following functional:

∑︂
Z\S
{p(Y | s,m, l, r, c)×

3∏︂
i=1

p(ri | s′,m, l, c)× p(l | s′,m, c)× p(m | s, c)× p(c)}.

If we use logistic regression to model Y and linear regression to model other variables

given their past, and compute the PSE on the odds ratio scale, it is straightforward to

show that the PSE simplifies to exp
(︂
θys + θymθ

m
s + θyl θ

l
mθ

m
s +∑︁

i θ
y
ri

(θrimθms + θril θ
l
mθ

m
s )
)︂
,

where θji denotes the coefficient associated with variable i in modeling the variable j,

[VanderWeele and Vansteelandt, 2010]. Therefore, the constraint in (3.2) is an easy

function to compute, and the resulting constrained optimization problem relatively easy

to solve. Unfortunately, adapting the constrained BART procedure is computationally

expensive.

We trained two models for Y, one by maximizing the constrained likelihood in (3.2)

using the R package nloptr, and the other by using the full model with no constrain.

For performance evaluation on test set, we should use E[Y | S,C] in constrained model

and E[Y | S,M,L,R,C] in unconstrained model. The PSE in the unconstrained

model is 3.16. This means, the odds of having a high income would have been more

than 3 times higher for a female if her sex and marital status would have been the

same as if she was a male. We solve the constrained problem by restricting the PSE

to lie between 0.95 and 1.05. Accuracy in the unconstrained model is 82%, and drops

to 72% in the constrained model while assuring that the constrained model is fair.
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3.2 Optimal Fair Policies

Making optimal and adaptive intervention decisions in the face of uncertainty is

a central task in precision medicine, computational social science, and artificial

intelligence. In healthcare, the problem of learning optimal policies is studied under

the heading of dynamic treatment regimes [Chakraborty and Moodie, 2013]. The same

problem is called reinforcement learning in artificial intelligence [Sutton and Barto,

1998], and optimal stochastic control [Bertsekas and Tsitsiklis, 1996] in engineering

and signal processing. In all of these cases, a policy (a function of historical data to

some space of possible actions, or a sequence of such functions) is chosen to maximize

some pre-specified outcome quantity, which might be abstractly considered a utility

(or reward in reinforcement learning).

Increasingly, ideas from optimal policy learning are being applied in new contexts.

In some areas, particularly socially-impactful settings like criminal justice, social

welfare policy, hiring, and personal finance, it is essential that automated decisions

respect principles of fairness since the relevant data sets include potentially sensitive

attributes (e.g., race, gender, age, disability status) and/or features highly correlated

with such attributes, so ignoring fairness considerations may have socially unacceptable

consequences. A particular worry in the context of automated sequential decision

making is “perpetuating injustice,” i.e., when maximizing utility maintains, reinforces,

or even introduces unfair dependence between sensitive features, decisions, and out-

comes. Though there has been growing interest in the issues of fairness in machine

learning [Pedreshi et al., 2008, Feldman et al., 2015, Hardt et al., 2016, Kamiran et al.,

2013, Corbett-Davies et al., 2017, Jabbari et al., 2017], so far methods for optimal

policy learning subject to fairness constraints have not been well-explored.

As a motivating example, we consider a simplified model for a children’s welfare

screening program, recently discussed in [Chouldechova et al., 2018, Hurley, 2018]. A
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hotline for child abuse and neglect receives many thousands of calls a year, and call

screeners must decide on the basis of calculated risk estimates what action to take in

response to any given call, e.g., whether or not to follow up with an in-person visit

from a caseworker. The idea is that only cases with substantial potential risk to the

child’s welfare should be prioritized. The information used to determine the calculated

risk level and thereby the agency’s action includes potentially sensitive features, such

as race and gender, as well as a myriad of other factors such as perhaps whether family

members receive public assistance, have an incarceration history, record of drug use,

and so on. Though many of these factors may be predictive of subsequent negative

outcomes for the children, there is a legitimate worry that both risk calculations and

policy choices based on them may depend on sensitive features in inappropriate ways,

and thereby lead to unfair racial disparities in the distribution of families investigated,

and perhaps separated, by child protective services.

Learning high-quality policies that satisfy fairness constraints is difficult due

to the fact that multiple sources of bias may occur in the problem simultaneously.

One kind of bias, which we call retrospective bias, has its origin in the historical

data used as input to the policy learning procedure. This data may reflect various

systematic disparities and discriminatory historical practices in our society, including

prior decisions themselves based on poor data. Algorithms trained on such data can

maintain these inequities. Furthermore, decision making algorithms may suffer from

what we call prospective sources of bias. For instance, suppose the functional form of

the chosen decision rule explicitly depends on sensitive features in inappropriate ways.

In that case, making decisions based on the new decision rule may perpetuate existing

disparities or even introduce disparities that were previously absent. Avoiding this sort

of bias may involve imposing non-trivial restrictions on the policy learning procedure.

Finally, learning high-quality policies from observational data requires dealing with

confounding bias, where associations between decision and reward cannot be used
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directly to assess decision quality due to the presence of confounding variables, as well

as statistical bias due to misspecified statistical models. Policy learning algorithms

that respect fairness constraints must address all of these sources of bias.

Our main theoretical result illustrates in what sense enacting fair policies can “break

the cycle of injustice”: we show how to learn policies such that the joint distribution

induced by these policies (in conjunction with reward/utility mechanisms outside

the policy-maker’s control) will satisfy specified fairness constraints while remaining

“close” to the generating distribution. To our knowledge, this work constitutes the

first attempt to integrate algorithmic fairness and policy learning with the possible

exception of [Jabbari et al., 2017], which addressed what we call prospective bias in

the context of Markov Decision Processes.

To precisely describe our approach, we must introduce some necessary concepts

and tools from counterfactual policies and optimal policy learning. Then, we adapt

our perspective on algorithmic fairness in prediction problems, outlined in the previous

section, to learning optimal fair policies. We illustrate our proposal via experiments

on synthetic and real data.

3.2.1 Policy Counterfactuals and Policy Learning

Consider a multi-stage decision problem with K pre-specified decision points, indexed

by k = 1, . . . , K. Let Y denote the final outcome of interest and Ak denote the action

made (treatment administered) at decision point k with the finite state space of Ak.

Let X denote the available information prior to the first decision, and Yk denote the

information collected between decisions k and k + 1, (Y ≡ YK). Ak represents all

treatments administered from time 1 to k; likewise for Y k. We combine the treatment

and covariate history up to treatment decision Ak into a history vector Hk. The state

space of Hk is denoted by Hk. While our proposal applies to arbitrary state spaces,

we present examples with continuous outcomes and binary decisions for simplicity.
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The goal of policy learning is to find policies that map vectors in Hk to values in

Ak (for all k) that maximize the expected value of outcome Y. In offline settings, where

exploration by direct experimentation is impossible, finding such policies requires

reasoning counterfactually, as is common in causal inference. Let fA = {fA1 , . . . , fAK}

be a sequence of decision rules. At the kth decision point, the kth rule fAk maps the

available information prior to the kth treatment decision Hk to treatment decision

ak, i.e., fAk : Hk ↦→ Ak. Given fA we define the counterfactual response of Y had A

been assigned according to fA, or Y (fA), by the following recursive definition [Robins,

2004, Richardson and Robins, 2013]:

Y
(︃{︂
fAk

(︂
Hk(fA)

)︂
: Ak ∈ paG(Y ) ∩ A

}︂
,
{︂

paG(Y ) \ A
}︂
(fA)

)︃
.

In words: the potential outcome Y had any parent of Y that is in A been set to fA in

response to counterfactual history Hk up to k, where this history behaves as if A were

set to fA and any parent of Y that is not in A, behaves as if A were set to fA.

Under a causal model associated with the DAG G, the distribution p(Y (fA)), is

identified by the following generalization of the g-formula:

∑︂
Z\{Y,A}

∏︂
V ∈Z\A

p
(︂
V |{fAk(Hk) : Ak ∈ paG(V ) ∩ A}, paG(V ) \ A

)︂
. (3.4)

Given an identified response to a fixed set of policies fA, we consider search for

the optimal policy set f ∗
A, defined to be one that maximizes E[Y (fA)]. Since Y (fA)

is a counterfactual quantity, validating the found set of policies is difficult given

only retrospective data, with statistical bias due to model misspecification being

a particular worry. This stands in contrast with online policy learning problems

in reinforcement learning, where new data under any policy may be generated and

validation is therefore automatic. Partly in response to this issue, a set of orthogonal

methods for policy learning have been developed that model different parts of the

observed data likelihood function. Q-learning, value search, and g-estimation are

common methods used in dynamic treatment regimes literature for learning optimal
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policies [Chakraborty and Moodie, 2013]. We defer detailed descriptions to later in

the section.

3.2.2 From Fair Prediction to Fair Policies

In Section 3.1 and [Nabi and Shpitser, 2018], we argued that fair inference for prediction

requires imposing hard constraints on the prediction problem, in the form of restricting

certain path-specific effects. We adapt this approach to optimal sequential decision-

making [Nabi et al., 2019]. We summarize this proposal with a brief example, inspired

by the aforementioned child welfare case.

Consider a simple causal model for this scenario, shown in Fig. 3-3(a). Hotline

operators receive thousands of calls per year, and must decide on an action A for

each call, e.g., whether or not to send a caseworker. These decisions are made on

the basis of a (high-dimensional) vectors of covariates X and M , as well as possibly

sensitive features S, such as race. M consists of mediators of the effect of S on A. Y1

corresponds to an indicator for whether the child is separated from their family by child

protective services, and Y2 corresponds to child hospitalization (presumably attributed

to domestic abuse or neglect). The observed joint distribution generated by this causal

model would be p(Y1, Y2, A,M, S,X). Our proposal from [Nabi and Shpitser, 2018]

is that fairness corresponds to the impermissibility of certain path-specific effects,

and so fair inference requires decisions to be made from a counterfactual distribution

p∗(Y1, Y2, A,M, S,X) which is “nearby” to p (in the sense of minimal Kullback-Leibler

divergence) but where these PSEs are constrained to be zero; p∗ is the distribution

generated by a “fair world.”

Multiple fairness concerns have been raised by experts and advocates in discussions

of the child protection decision-making process [Chouldechova et al., 2018, Hurley,

2018]. For example, it is clearly impermissible that race has any direct effect on the

decision made by the hotline screener, i.e., that all else being held fixed, members from
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Figure 3-3: (a) A causal DAG corresponding to our (simplified) child welfare example
with baseline factors X, sensitive feature S, action A, vector of mediators (including
e.g. socioeconomic variables, histories of drug treatment) M , an indicator Y1 of whether
a child is separated from their parents, and an indicator of child hospitalization Y2. (b)
A multistage decision problem, which corresponds to a complete DAG over vertices
X,S,M,A1, Y1, · · · , AK , YK .

one group have a higher probability of being surveilled by the agency. However, it is

perhaps permissible that race has an indirect effect via some mediated pathway, e.g., if

race is associated with some behaviors or features which themselves ought to be taken

into consideration by hotline staffers, because they are predictive of abuse. If that’s

true, then S → A would be labeled an impermissible pathway whereas S →M → A

(for some M) would be permissible. Similarly, it would be unacceptable if race had an

effect on whether children are separated from their families; arguably both the direct

pathway S → Y1 and indirect pathway though hotline decisions S → A→ Y1 should

be considered impermissible. Rather than defend any particular choice of path-specific

constraints, we note that our fairness framework for prediction problems can flexibly

accommodate any set of given constraints, as long as the PSEs are identifiable from

the observed distribution.

Inference in a nearby “fair world”

We now describe the specifics of the proposal. We assume the data is generated

according to some (known) causal model, with observed data distribution p(·), and
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that we can characterize the fair world by a fair distribution p∗(·) where some set of

pre-specified PSEs are constrained to be zero, or within a tolerance range. Without

loss of generality we can assume the utility variable Y is some deterministic function

of Y1 and Y2 (i.e., Y ≡ u(Y1, Y2)) and thus use Y in place of Y1 and Y2 in what

follows. Then Z = (Y,X, S,M,A) in our child welfare example. For the purposes of

illustration, assume the following two PSEs are impermissible: PSEsa, corresponding

to the direct effect of S on A and defined as E[A(s,M(s′))] − E[A(s′)], and PSEsy,

corresponding to the effect of S on Y along the edge S → Y, and the path S → A→ Y

and defined as E[Y (s, A(s,M(s′)),M(s′))]− E[Y (s′)].

If the PSEs are identified under the considered causal model, they can be written

as functions of the observed distribution. For example, the unfair PSE of the sensitive

feature S on outcome Y in our child welfare example may be written as a functional

PSEsy = g1(pZ) ≡ g1(p(Y,X, S,M,A)). Similarly the unfair PSE of S on A is PSEsa =

g2(pZ) ≡ g2(p(Y,X, S,M,A)). Generally, given a set of identified PSEs gj(pZ)∀j ∈

{1, ..., J} and corresponding tolerated lower/upper bounds ϵ−
j , ϵ

+
j , the fair distribution

p∗(Z) is defined as

p∗(Z) ≡ arg min
q

DKL(p || q)

subject to ϵ−
j ≤ gj(pZ) ≤ ϵ+

j , ∀j ∈ {1, ..., J}, (3.5)

where DKL is the KL-divergence and J is the number of constraints.1 In finite sample

settings, we propose solving the following constrained maximum likelihood problem:

ˆ︁α = arg max
α
L(Z;α)

subject to ϵ−
j ≤ ˆ︁gj(pZ) ≤ ϵ+

j , ∀j ∈ {1, ..., J}, (3.6)

where ˆ︁gj(pZ) are estimators for the chosen PSEs and L(Z;α) is the likelihood function.

The most relevant bounds in practice are the null values for ϵ−
j and ϵ+

j .

1Note that in our examples J will typically be K + 1, i.e., one constraint for the S to Y paths
and one constraint for each set of paths from S to Ak. We allow for J constraints in general to
accommodate more complex settings (e.g., where there are multiple sensitive features, multiple
outcomes, or a different set of pathways are constrained).
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Fair decision-making

In the sequential decision setting, there are multiple complications. In particular, we

aim to learn high-quality policies while simultaneously making sure that the joint

distribution induced by the policy satisfies our fairness criteria, potentially involving

constraints on multiple causal pathways. This problem must be solved in settings

where distributions of some variables, such as outcomes, are not under the policy-

maker’s control. Finally, we must show that if the learned policy is adapted to new

instances (drawn from the original observed distribution) in the right way, then these

new instances combined with the learned policy, constrained variables, and variables

outside our control, together form a joint distribution where our fairness criteria

remain satisfied.

Consider a K-stage decision problem given by a DAG where every vertex pair is

connected, and with vertices in a topological order X,S,M,A1, Y1, . . . , AK , YK ; see

Fig. 3-3(b). Note that the setting where S can be assumed exogenous is a special

case of this model with missing edge between X and S. Though we only assume a

single set of permissible mediators M here, at the expense of some added cumbersome

notation all of the following can be extended to the case where there are distinct sets

of mediators M1, . . . ,MK preceding every decision point. (We extend the results below

to that setting in Appendix V.) We will consider the following PSEs as inadmissible:

PSEsy, representing the effect of S on Y along all paths other than the paths of the

form S → M → . . . → Y ; and PSEsak , representing the effect of S on Ak along all

paths other than the paths of the form S → M → . . . → Ak. That is, we consider

only pathways connecting S and Ak or Y through the allowed mediators M to be fair.
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In this model, these PSEs are identified by [Shpitser, 2013]:

PSEsy = E[Y (s,M(s′))]− E[Y (s′)]

=
∑︂
X,M

{︂
E[Y | S = s,M,X]− E[Y | S = s′,M,X]

}︂
× p(M | S = s′, X)× p(X),

PSEsak = E[Ak(s,M(s′))]− E[Ak(s′)]

=
∑︂
X,M

{︂
E[Ak | S = s,M,X]− E[Ak | S = s′,M,X]

}︂
× p(M | S = s′, X)× p(X).

Numerous approaches for estimating and constraining these identified PSEs are

possible. Here, we restrict our attention to semiparametric estimators, which model

only a part of the likelihood function while leaving the rest completely unrestricted.

Estimators of this sort share some advantages with parametric methods (e.g., often

being uniformly consistent at favorable rates), but do not require specification of the

full probability model. Specifically, we use estimators based on the following result.

Theorem 5. Assume S is binary. Under the causal model above, the followings are

consistent estimators of PSEsy and PSEsak , assuming all models are correctly specified:

ˆ︁gsy(Z) = 1
N

N∑︂
n=1

{︃I(Sn = s)
p(Sn|Xn) ×

p(Mn|s′, Xn)
p(Mn|s,Xn) −

I(Sn = s′)
p(Sn|Xn)

}︃
× Yn,

ˆ︁gsak(Z) = 1
N

N∑︂
n=1

{︃I(Sn = s)
p(Sn|Xn) ×

p(Mn|s′, Xn)
p(Mn|s,Xn) −

I(Sn = s′)
p(Sn|Xn)

}︃
× Akn.

These inverse probability weighted (IPW) estimators use models for M and S.

Thus, we can approximate p∗ by constraining only the M and S models, i.e., obtaining

estimates α̂m and α̂s of the parameters αm and αs in p∗(M | S,X;αm) and p∗(S | X;αs)

by solving (3.6). The outcomes Yk and decisions Ak are left unconstrained. This

is subtle and important, since it enables us to choose our optimal decision rules f ∗
A

without restriction of the policy space and allows the mechanism determining outcomes
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Yk (based on decisions Ak and history Hk) to remain outside the control of the policy-

maker. Consequently, we can show that implementing this procedure guarantees that

the joint distribution over all variables Z induced by 1) the constrained M and S

models, 2) the conditional distributions for Ak given Hk implied by the optimal policy

choice, and 3) any choice of p(Yk | Ak, Hk) will (at the population-level) satisfy the

specified fairness constraints. We prove the following result in the Supplement:

Theorem 6. Consider the K-stage decision problem described by the DAG in Fig. 3-

3(c). Let p∗(M | S, ,X;αm) and p∗(S | X;αs) be the constrained models chosen

to satisfy PSEsy = 0 and PSEsak = 0. Let ˜︁p(Z) be the joint distribution induced

by p∗(M | S,X;αm) and p∗(S | X;αs), and where all other distributions in the

factorization are unrestricted. That is,

˜︁p(Z) ≡ p(X)× p∗(S | X;αs)× p∗(M | S,X;αm)×
K∏︂
k=1

p(Ak | Hk)× p(Yk | Ak, Hk).

Then the functionals PSEsy and PSEsai taken w.r.t. ˜︁p(Z) are also zero.

This theorem implies that any approach for learning policies based on ˜︁p(Z) ad-

dresses both retrospective bias (since the fairness criterion violation present in p(Z) is

absent in ˜︁p(Z)) and prospective bias (since the criterion holds in ˜︁p(Z) for any choice

of policy on Ak inducing p(Ak | Hk)). As we discuss in detail in the next following,

modified policy learning based on ˜︁p(Z) requires special treatment of the constrained

variables S and M. New instances (e.g., new calls to the child protection hotline)

will be drawn from the unfair distribution p, not ˜︁p. So, the enacted policy cannot

use empirically observed values of S or M. In what follows, our approach is to either

average over S and M (following the procedure in Section 3.1 and [Nabi and Shpitser,

2018]), or resample observations of S and M from the constrained models.
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3.2.3 Estimation of Optimal Policies in the Fair World

In the following, we describe several strategies for learning optimal policies, and our

modifications to these strategies based on the above fairness considerations.

Q-learning

In Q-learning, the optimal policy is chosen to optimize a sequence of counterfactual

expectations called Q-functions. These are defined recursively in terms of value

functions Vk(·) as follows:

QK(HK , AK) = E[YK(AK) | HK ], VK(HK) = max
aK

QK(HK , aK), (3.7)

and for k = K − 1, . . . , 1

Qk(Hk, Ak) = E[Vk+1(Hk+1, Ak) | Hk], Vk(Hk) = max
ak

Qk(Hk, ak). (3.8)

Assuming Qk(Hk, Ak) is parameterized by βk, the optimal policy at each stage may be

easily derived from Q-functions as f ∗
Ak

(Hk) = arg maxak Qk(Hk, ak; ˆ︁βk). Q-functions are

recursively defined regression models where outcomes are value functions, and features

are histories up to the current decision point. Thus, parameters βk (k = 1, . . . , K) of

all Q-functions may be learned recursively by maximum likelihood methods applied

to regression at stage k, given that the value function at stage k + 1 was already

computed for every row; see [Chakraborty and Moodie, 2013] for more details.

Note that at each stage k, the identity Qk(Hk, Ak) = E[Vk+1(Hk+1, Ak) | Hk] =

E[Vk+1(Hk+1) | Ak, Hk] only holds under our causal model if the entire past Hk is

conditioned on. In particular, E[Vk+1(Hk+1, Ak) | Hk \ {M,S}] ̸= E[Vk+1(Hk+1) |

Ak, Hk \{M,S}]. To see a simple example of this, note that YK(a1) is not independent

of A1 conditional on just X in Fig. 3-3(b), due to the presence of the path YK ←M →

A1; however the indepenence does hold conditional on the entire H1 = {X,S,M}

[Richardson and Robins, 2013].
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In a fair policy learning setting, though {M,S} may be in Hk, we cannot condition

on values of M,S to learn fair policies since these values were drawn from p rather than

p∗. There are multiple ways of addressing this issue. One approach is to modify the

procedure to obtain optimal policies that condition on all history other than {M,S}.

We first learn Qks using (3.7) and (3.8). We then provide the following modified

definition of Q-functions defined directly on p∗:

Q∗
k(Hk \ {M,S}, Ak;βk) = 1

W
×
∑︂
m,s

Qk(Hk, Ak;βk)×
k∏︂
i=1

p(Ai | Hi \ {M,S},m, s)

×
k−1∏︂
i=2

p(Mi | Ai, Hi \ {M,S},m, s)× p∗(m, s | X),

where for k = K, . . . , 1,

W =
∑︂
m,s

p∗(m, s|X)
k∏︂
i=1

p(Ai|Hi \ {M,S},m, s)
k−1∏︂
i=2

p(Mi|Ai, Hi \ {M,S},m, s).

The optimal fair policy at each stage is then derived from Q∗-functions as

f ∗
Ak

(Hk) = arg max
ak

Q∗
k(Hk \ {M,S}, ak; ˆ︁βk).

As an alternative approach, we can compute the original Q-functions defined in

(3.7) and (3.8) with respect to p∗(Z) by ignoring the observed values Mn and Sn for

the nth individual and replacing them with samples drawn from p∗(M | S,X;αm) and

p∗(S | X;αs). Then, in (3.7) and (3.8), the history at the kth stage, Hk, gets replaced

with H∗
k = {Hk \ {M,S},M∗, S∗}.

Value search

It may be of interest to estimate the optimal policy within a restricted class F . One

approach to learning the optimal policy within F is to directly search for the optimal

f ∗,F
A ≡ arg maxfA∈F E[Y (fA)], which is known as value search. The expected response

to an arbitrary policy ϕ = E[Y (fA)], for fA ∈ F can be estimated in a number of

ways. Often ˆ︁ϕ takes the form of a solution to some estimating equation E[h(ϕ)] = 0
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solved empirically given samples from p(Z). A simple estimator for ϕ that uses only

the treatment assignment model π(Hk;ψ) ≡ p(Ak = 1|Hk) is the IPW estimator that

solves the following estimating equation:

E
[︄

K∏︂
k=1

{︂
CfAk/πfAk (Hk; ˆ︁ψ)

}︂
× Y − ϕ

]︄
= 0, (3.9)

where the expectation is evaluated empirically and ˆ︁ψ is fit by maximum likelihood.

Further, πfAk (Hk;ψ) ≡ π(Hk;ψ) × fAk(Hk) + (1 − π(Hk;ψ)) × (1 − fAk(Hk)) and

CfAk ≡ I(Ak = fAk(Hk)).

Finding fair policies via value search involves solving the same problem with respect

to p∗(Z) instead. Given known models p∗(M | S,X;αm) and p∗(S | X;αs), we may

consider two approaches. The first one involves solving a modified estimating equation

of the form

E∗[h(ϕ)] ≡ E
[︄ ∑︂
m,s

E[h(ϕ) |M,S,X]× p∗(M | S,X;αm)× p∗(S | X;αs)
]︄

= 0,

with respect to p∗(Z \ {M,S}).

The alternative is to solve the original estimating equation E[h(ϕ)] = 0 with

respect to p∗(Z) by replacing observed values Mn and Sn for the nth individual with

sampled values M∗
n and S∗

n drawn from p∗(M |S,X;αm) and p∗(S|X;αs). In both

approaches, the optimal fair policy at each stage is then derived by replacing the

history at the kth stage, Hk, with H∗
k = {Hk \ {M,S},M∗, S∗} . Given constrained

models p∗(M |S,X;αm), and p∗(S|X;αs) representing p∗(Z), we can perform value

search by solving the given estimating equation empirically on a dataset where every

row xn, sn,mn in the data is replaced with I rows xn, s∗
ni,m

∗
ni for i = 1, . . . I, with m∗

ni

and s∗
ni drawn from p∗(M |S, xn;αm) and p∗(S|xn;αs), respectively.

G-estimation

A third method for estimating policies is to directly model the counterfactual contrasts

known as optimal blip-to-zero functions and then learn these functions by a method
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called g-estimation [Robins, 2004]. In the interest of space, we defer a full description

of blip-to-zero functions and g-estimation to Appendix V, where we also present some

results for our implementation of fair g-estimation.

Tradeoffs and treatment of constrained variables

We have proposed to constrain the M and S models to satisfy given fairness constraints.

Since empirically observed values of M and S are sampled from p rather than p∗ (or

˜︁p), our approach requires resampling or averaging over these features. The choice

of models to constrain involves a tradeoff. The more models are constrained, the

closer the KL distance between p and p∗, but the more features have to be resampled

or averaged out; that is, some information on new instances is “lost.” Alternative

approaches may constrain fewer or different models in the likelihood (for example, we

could have selected to constrain the Y model instead of S). However, the benefit of our

approach here is that we can guarantee, with outcomes Y outside the policy-maker’s

control, that the induced joint distribution will satisfy the given fairness constraints

(by Theorem 6), whereas alternative procedures which aim to avoid averaging or

resampling will typically have no such guarantees. Another alternative that avoids

averaging over variables altogether is to consider likelihood parameterizations where

the absence of a given PSE directly corresponds to setting some variation-independent

likelihood parameter for the Y model to zero. While such a parameterization is

possible for linear structural equation models, it is an open problem in general for

arbitrary PSEs and nonlinear settings. Developing novel, general-purpose alternatives

that transfer observed distributions to their “fair versions,” while avoiding resampling

and averaging, is an open problem left to future work.
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3.2.4 Data Analyses

We now illustrate our approach to learning optimal fair policies with both synthetic

data and COMPAS criminal justice data.

Synthetic data

We generated synthetic data for a two-stage decision problem according to the causal

model shown in Fig. 3-3(c) (K = 2), where all variables are binary except for the

continuous response utility Y ≡ Y2. Details on the specific models used are reported

in Appendix V. We generated a dataset of size 5000, with 100 bootstrap replications,

where the sensitive variable S is randomly assigned and where S is chosen to be an

informative covariate in estimating Y .

We use estimators in Theorem 5 to compute PSEsy, PSEsa1 , and PSEsa2 which

entail using M and S models. In this setting, the PSEsy is 1.918 (on the mean scale)

and is restricted to lie between −0.1 and 0.1. The PSEsa1 is 0.718, and PSEsa2 is

0.921 (on the odds ratio scale) and both are restricted to lie between 0.95 and 1.05.

We only constrain M and S models to approximate p∗ and fit these two models by

maximizing the constrained likelihood using the R package nloptr. The parameters

in all other models were estimated by maximizing the likelihood.

Optimal fair polices along with optimal (unfair) policies were estimated using the

two techniques described in Section 3.2.3 (where we used the “averaging” approach

in both cases). We evaluated the performance of both techniques by comparing the

population-level response under fair policies versus unfair policies. One would expect

the unfair policies to lead to higher expected outcomes compared to fair policies

since satisfying fairness constraints requires sacrificing some policy effectiveness. The

expected outcomes under unfair polices obtained from Q-learning and value search were

7.219±0.005 and 7.622±0.265, respectively. The values dropped to 6.104±0.006 and

6.272±0.133 under fair polices, as expected. In addition, both fair and unfair optimal
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Figure 3-4: Group-level incarceration rates for the COMPAS data as a function of the
utility parameter θ.

polices had higher expected outcomes than the observed population-level outcome,

using both methods. In our simulations, the population outcome under observed

policies was 4.82±0.007. Some additional results are reported in the Supplement.

The COMPAS dataset

The COMPAS dataset includes records on risk scores (A), defendant’s age (X1 ∈ X),

gender (X2 ∈ X), race (S), prior convictions (M), and whether or not recidivism

occurred in a span of two years (R). We limited our attention to the cohort consisting

of African Americans and Caucasians, and to individuals who either had not been

arrested for a new offense or who had recidivated within two years. Our sample size

is 5278. All variables were binarized including the COMPAS score, which we treat

as an indicator of a binary decision to incarcerate versus release (pretrial) “high risk”

individuals, i.e., we assume those with score ≥ 7 were incarcerated. In this data,

28.9% of individuals had scores ≥ 7.

Since the data does not include any variable that corresponds to utility, and there is

no uncontroversial definition of what function one should optimize, we define a heuristic
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utility function from the data as follows. We assume there is some (social, economic,

and human) cost, i.e., negative utility, associated with incarceration (deciding A = 1),

and that there is some cost to releasing individuals who go on to reoffend (i.e., for

whom A = 0 and R = 1). Also, there is positive utility associated with releasing

individuals who do not go on to recidivate (i.e., for whom A = 0 and R = 0).

A crucial feature of any realistic utility function is how to balance these relative

costs, e.g., how much (if any) “worse” it is to release an individual who goes on to

reoffend than to incarcerate them. To model these considerations we define utility

Y ≡ (1− A)× {−θR + (1−R)} − A. The utility function is thus parameterized by

θ, which quantifies how much “worse” is the case where individuals are released and

reoffend as compared with the other two possibilities which are treated symmetrically.

We emphasize that this utility function is a heuristic we use to illustrate our optimal

policy learning method, and that a realistic utility function would be much more

complicated (possibly depending also on factors not recorded in the available data).

We apply our proposed Q-learning procedure to optimize E[Y ], assuming K = 1

and exogenous S. The fair policy constrains S → A and S → Y pathways; see

Appendix V for details of our implementation as well as additional results. The

proportion of individuals incarcerated (A = 1) is a function of θ, plotted in Fig. 3-4

and stratified by racial group. See the supplement for results on overall incerceration

rates, which also vary among the policies. The region of particular interest is between

θ = 2 and 3, where fair and unrestricted optimal policies differ and both recommend

lower-than-observed overall incarceration rates; see the supplement. For most θ

values, the fair policy recommends a decision rule which narrows the racial gap in

incarceration rates as compared with the unrestricted policy, though does not eliminate

this gap entirely. (Constraining the causal effects of race through mediator M would

go further in eliminating this gap.) In regions where θ > 3, both optimal policies in

fact recommend higher-than-observed overall incarceration rates but a narrower racial
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gap, particularly for the fair policy. Comparing fair and unconstrained policy learning

on this data serves to simultaneously illustrate how the proposed methods can be

applied to real problems and how the choice of utility function is not innocuous.

3.3 Conclusions

Algorithms are opinions embedded in code. Despite their illusion of objectivity, they

make use of subjective judgements of human beings at every step of their development,

from data collection and naming of variables, to the way algorithms are trained and

their output presented to decision makers. The goal of algorithmic fairness is to build

algorithms that minimize the potential harm that they may place on underrepresented

minorities. This entails devising algorithms that are sensitive to different sources

of bias, tackling and removing these biases in the training step, and realizing the

limitations and generalizations of what we create.

In this chapter, we considered the problem of fair statistical inference in two settings:

fair predictions and fair policies, where we wish to minimize unfairness with respect to

a particular sensitive feature, such as race or gender. We formalized the presence of

unfairness as the presence of a certain path-specific effect (PSE) [Pearl, 2001, Shpitser,

2013], and framed the problem as one where we maximize the likelihood subject to

constraints that restrict the magnitude of the PSE. We explored the implications of

this view for cases where the PSE of interest is not identified, and for computational

Bayesian methods. We illustrated our approach using experiments on real datasets.

One of the advantages of our approach is it can be readily extended to concepts like

affirmative action and “the wage gap.” For instance, to conceptualize affirmative action,

we propose to define a set of “valid paths” from S (e.g., race/sexual orientation) to Y

(e.g., admission decision), perhaps paths through academic merit, or extracurriculars,

or even the direct path, and solve a constrained optimization problem that increases
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the PSE along these paths. Here we mean placing a lower bound ϵl on the PSE away

from the value corresponding to “no effect". Then, we learn p∗ as the KL-closest

distribution to the observed data distribution p that satisfies the constraint on the

PSE. Finally, we predict the admission decision of a new instance Z in a similar way

as the proposal in this chapter, by using the information in the new instance Z shared

between p and p∗, and predicting/averaging over other information using p∗. We thus

“count the causal influence of the sensitive feature on admission via prescribed paths”

more highly among disadvantaged minorities. Defining these paths is a domain-specific

issue. Increasing the PSE potentially lowers predictive performance, just as decreasing

the PSE did in our experiments on reducing unfair biases. This makes sense since

we are moving away from the PSE implied by the “unfair world” given by the MLE

towards something else that we deem more “fair”. A similar definition can be made

for “the wage gap”, which we believe should be meaningfully defined as a comparison

of the PSE of gender on salary with respect to “inappropriate paths.”

One methodological difficulty with our approach is the need for a computationally

challenging constrained optimization problem. We discuss an alternative to reparam-

eterize the observed data likelihood to include the causal parameter corresponding

to the unfair PSE, in a way causal parameters have been added to the likelihood

in structural nested mean models [Robins, 1999]. Under such a reparameterization,

minimizing the PSE always corresponds to imposing box constraints on the likelihood

[Nabi et al., 2020c].

Furthermore, we have extended a formalization of algorithmic fairness from [Nabi

and Shpitser, 2018] to the setting of learning optimal policies under fairness constraints.

We demonstrated how to constrain a set of statistical models and learn a policy such

that subsequent decision making given new observations from the “unfair world”

induces high-quality outcomes while satisfying the specified fairness constraints in the

induced joint distribution. In this sense, our approach can be said to “break the cycle
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of injustice” in decision-making. We investigated the performance of our proposals on

synthetic and real data, where in the latter case we have supplemented the data with

a heuristic utility function.

86



Chapter 4

Graphical Models of Missing Data

Missing data has the potential to affect analyses conducted in all fields of scientific

study, including healthcare, economics, and the social sciences. Strategies to cope

with missingness that depends only on the observed data, known as the missing at

random (MAR) mechanism, are well-studied [Dempster et al., 1977, Cheng, 1994,

Robins et al., 1994a, Tsiatis, 2007]. However, the setting where missingness depends

on covariates that may themselves be missing, known as the missing not at random

(MNAR) mechanism, is substantially more difficult and under-studied [Fielding et al.,

2008, Marston et al., 2010]. MNAR mechanisms are expected to occur quite often in

practice, for example, in longitudinal studies with complex patterns of dropout and

re-enrollment, or in studies where social stigma may prompt non-response to questions

pertaining to drug-use, or sexual activity and orientation, in a way that depends on

other imperfectly collected or censored covariates [Robins and Gill, 1997, Vansteelandt

et al., 2007, Marra et al., 2017].

Previous work on MNAR models has proceeded by imposing a set of restrictions

on the full data distribution (the target distribution and its missingness mechanism)

that are sufficient to yield identification of the parameter of interest. While there exist

MNAR models whose restrictions cannot be represented graphically [Tchetgen et al.,

2018], the restrictions posed in several popular MNAR models such as the permutation

model [Robins and Gill, 1997], the block-sequential MAR model [Zhou et al., 2010],
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the itemwise conditionally independent nonresponse (ICIN) model [Shpitser, 2016,

Sadinle and Reiter, 2017], and those in [Daniel et al., 2012, Thoemmes and Rose, 2013,

Martel García, 2013, Mohan et al., 2013, Mohan and Pearl, 2014, Saadati and Tian,

2019] are either explicitly graphical or can be interpreted as such.

In our earlier work [Bhattacharya et al., 2019b], we considered the identifiability of

the target distribution within the class of graphical models of missing data, and showed

that the most general identification strategies, [Mohan and Pearl, 2014, Shpitser et al.,

2015, Bhattacharya et al., 2019b], retain a significant gap in that they fail to identify a

wide class of identifiable distributions. We proposed a new algorithm that significantly

narrowed the identifiability gap in existing methods.

In this chapter, we show that even our most general algorithm [Bhattacharya

et al., 2019b] still retains a significant gap in that there exist target distributions

that are identified which the algorithm fails to identify. We then present what is, to

our knowledge, the first completeness result for missing data models representable

as DAGs – a necessary and sufficient graphical condition under which the full data

distribution is identified as a function of the observed data distribution [Nabi et al.,

2020a]. For any given field of study, such a characterization is one of the most powerful

results that identification theory can offer, as it comes with the guarantee that if these

conditions do not hold, the model is provably not identified.

We further generalize these graphical conditions to settings where some variables

are not just missing, but completely unobserved. Such distributions are typically

summarized using acyclic directed mixed graphs (ADMGs), describes in Chapter 1

and [Richardson et al., 2017]. We prove, once again, that our graphical criteria are

sound and complete for the identification of full laws that are Markov relative to a

hidden variable DAG and the resulting summary ADMG. This new result allows us

to address two of the most critical issues in practical data analyses simultaneously,

those of missingness and unmeasured confounding [Nabi et al., 2020a].
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Finally, in the course of proving our results on completeness, we show that the

proposed graphical conditions also imply that all missing data models of directed

acyclic graphs or acyclic directed mixed graphs that meet these conditions, are in

fact sub-models of the MNAR models in [Shpitser, 2016, Sadinle and Reiter, 2017].

This simple, yet powerful result implies that the joint density of these models may be

identified using an odds ratio parameterization that also ensures congenial specification

of various components of the likelihood [Chen, 2007, Malinsky et al., 2019]. Our results

serve as an important precondition for the development of score-based model selection

methods for graphical models of missing data, as an alternative to the constraint-based

approaches proposed in [Strobl et al., 2018, Gain and Shpitser, 2018, Tu et al., 2019].

4.1 Missing Data Models

A missing data model is a set of distributions defined over a set of random variables

{O,X(1), R,X}, where O denotes the set of variables that are always observed, X(1)

denotes the set of variables that are potentially missing, R denotes the set of missingness

indicators of the variables in X(1), and X denotes the set of the observed proxies

of the variables in X(1). By definition missingness indicators are binary random

variables; however, the state space of variables in X(1) and O are unrestricted. Given

X
(1)
i ∈ X(1) and its corresponding missingness indicator Ri ∈ R, the observed proxy

Xi is defined as Xi ≡ X
(1)
i if Ri = 1, and Xi =? if Ri = 0. Hence, p(X | R,X(1))

is deterministically defined. We call the non-deterministic part of a missing data

distribution, i.e, p(O,X(1), R), the full law, and partition it into two pieces: the target

law p(O,X(1)) and the missingness mechanism p(R | X(1), O). The censored version

of the full law p(O,R,X), that the analyst actually has access to is known as the

observed data distribution.

Following the convention in [Mohan et al., 2013], let G(V ) be a missing data DAG,

where V = {O∪X(1)∪R∪X}. In addition to acyclicity, edges of a missing data DAG
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are subject to other restrictions: outgoing edges from variables in R cannot point

to variables in {X(1), O}, each Xi ∈ X has only two parents in G, i.e., Ri and X
(1)
i

(these edges represent the deterministic function above that defines Xi, and are shown

in gray in all the figures below), and there are no outgoing edges from Xi (i.e., the

proxy Xi does not cause any variable on the DAG, however the corresponding full

data variable X(1)
i may cause other variables.) A missing data model associated with

a missing data DAG G is the set of distributions p(O,X(1), R,X) that factorizes as,

∏︂
Vi∈O∪X(1)∪R

p(Vi | paG(Vi))
∏︂
Xi∈X

p(Xi | X(1)
i , Ri).

By standard results on DAG models, conditional independences in p(X(1), O,R) can

still be read off from G by the d-separation criterion [Pearl, 2009]. For convenience, we

will drop the deterministic terms of the form p(Xi | X(1)
i , Ri) from the identification

analyses in the following sections since these terms are always identified by construction.

As an extension, we also consider a hidden variable DAG G(V ∪ U), where V =

{O,X(1), R,X} and variables in U are unobserved, to encode missing data models

in the presence of unmeasured confounders. In such cases, the full law would obey

the nested Markov factorization [Richardson et al., 2017] with respect to a missing

data ADMG G(V ), obtained by applying the latent projection operator [Verma and

Pearl, 1990a] to the hidden variable DAG G(V ∪ U). As a result of marginalization of

latents U, there might exist bi-directed edges (to encode the hidden common causes)

between variables in V (bi-directed edges are shown in red in all the figures below).

It is straightforward to see that a missing data ADMG obtained via projection of a

hidden variable missing data DAG follows the exact same restrictions as stated in the

previous paragraph (i.e., no directed cycles, paG(Xi) = {X(1)
i , Ri}, every Xi ∈ X is

childless, and there are no outgoing edges from Ri to any variables in {X(1), O}.)
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Identification in Missing Data Models

The goal of non-parametric identification in missing data models is twofold: identifica-

tion of the target law p(O,X(1)) or functions of it f(p(O,X(1))), and identification of

the full law p(O,X(1), R), in terms of the observed data distribution p(O,R,X).

A compelling reason to study the problem of identification of the full law in and

of itself, is due to the fact that many popular methods for model selection or causal

discovery, rely on the specification of a well-defined and congenial joint distribution

[Chickering, 2002a, Ramsey, 2015, Ogarrio et al., 2016]. A complete theory of the

characterization of missing data full laws that are identified opens up the possibility

of adapting such methods to settings involving non-ignorable missingness, in order

to learn not only substantive relationships between variables of interest in the target

distribution, but also the processes that drive their missingness. This is in contrast

to previous approaches to model selection under missing data that are restricted to

submodels of a single fixed identified model [Strobl et al., 2018, Gain and Shpitser,

2018, Tu et al., 2019]. Such an assumption may be impractical in complex healthcare

settings, for example, where discovering the factors that lead to missingness or study-

dropout may be just as important as discovering substantive relations in the underlying

data.

Though the focus of this chapter is on identification of the full law of missing data

models that can be represented by a DAG (or a hidden variable DAG), some of our

results naturally extend to identification of the target law (and functionals therein) due

to the fact that the target law can be derived from the full law as ∑︁R p(O,X(1), R).

Remark 1. By chain rule of probability, the target law p(O,X(1)) is identified if and

only if p(R = 1 | O,X(1)) is identified. The identifying functional is given by

p(O,X(1)) = p(O,X(1), R = 1)
p(R = 1 | O,X(1)) .

(the numerator is a function of observed data by noting that X(1) = X, and is observed
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when R = 1).

Remark 2. The full law p(O,X(1), R) is identified if and only if p(R | O,X(1)) is

identified. According to Remark 1, the identifying functional is given by

p(O,X(1), R) = p(O,X(1), R = 1)
p(R = 1 | O,X(1)) × p(R | O,X

(1)).

The rest of the chapter is organized as follows. In Section 4.2, we explain, through

examples, why none of the existing identification algorithms put forward in the

literature are complete in the sense that there exist missing data DAGs whose full

law and target law are identified but these algorithms fail to derive an identifying

functional for them. In Section 4.3, we provide a complete algorithm for full law

identification. In Section 4.4, we further extend our identification results to models

where unmeasured confounders are present. We defer all proofs to Appendix VI.

4.2 Incompleteness of Current Identification Meth-
ods

In this section, we show that even the most general methods proposed for identification

in missing data DAG models remain incomplete. In other words, we show that there

exist identified MNAR models that are representable by DAGs, however all existing

algorithms fail to identify both the full and target law for these models. For brevity, we

use our procedure proposed in [Bhattacharya et al., 2019b] as an exemplar. However,

as it is the most general procedure in the current literature, failure to identify via

this procedure would imply failure by all other existing ones. For each example, we

also provide alternate arguments for identification that eventually lead to the general

theory.
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Our algorithm proposed in [Bhattacharya et al., 2019b] proceeds as follows. For

each missingness indicator Ri, the algorithm tries to identify the distribution p(Ri |

paG(Ri))|R=1, sometimes referred to as the propensity score of Ri. It does so by

checking if Ri is conditionally independent (given its parents) of the corresponding

missingness indicators of its parents that are potentially missing. If this is the case,

the propensity score is identified by a simple conditional independence argument

(d-separation). Otherwise, the algorithm checks if this condition holds in post-fixing

distributions obtained through recursive application of the fixing operator, which

roughly corresponds to inverse weighting the current distribution by the propensity

score of the variable being fixed [Richardson et al., 2017] (a more formal definition

is provided in Appendix I.) If the algorithm succeeds in identifying the propensity

score for each missingness indicator in this manner, then it succeeds in identifying the

target law as Remark 1 suggests, since p(R = 1 | O,X(1)) = ∏︁
Ri∈R p(Ri | paG(R))|R=1.

Additionally, if it is the case that in the course of execution, the propensity score

p(Ri | paG(Ri)) for each missingness indicator is also identified at all levels of its

parents, then the algorithm also succeeds in identifying the full law (due to Remark 2).

In order to ground our theory in reality, we now describe a series of hypotheses that

may arise during the course of a data analysis that seeks to study the link between

the effects of smoking on bronchitis, through the deposition of tar or other particulate

matter in the lungs. For each hypothesis, we ask if the investigator is able to evaluate

the goodness of fit of the proposed model, typically expressed as a function of the

full data likelihood, as a function of just the observed data. In other words, we ask if

the full law is identified as a function of the observed data distribution. If it is, this

enables the analyst to compare and contrast different hypotheses and select one that

fits the data the best.

Setup. To start, the investigator consults a large observational database con-

taining the smoking habits, measurements of particulate matter in the lungs, and
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results of diagnostic tests for bronchitis on individuals across a city. She notices

however, that several entries in the database are missing. This leads her to propose

a model like the one shown in Fig. 4-1(a), where X(1)
1 , X

(1)
2 , and X

(1)
3 correspond to

smoking, particulate matter, and bronchitis respectively, and R1, R2, and R3 are the

corresponding missingness indicators.

For the target distribution p(X(1)), she proposes a simple mechanism that smoking

leads to increased deposits of tar in the lungs, which in turn leads to bronchitis

(X(1)
1 → X

(1)
2 → X

(1)
3 ). For the missingness process, she proposes that a suspected

diagnosis of bronchitis is likely to lead to an inquiry about the smoking status of

the patient (X(1)
3 → R1), smokers are more likely to get tested for tar and bronchitis

(X(1)
1 → R2, X

(1)
1 → R3), and ordering a diagnostic test for bronchitis, increases the

likelihood of ordering a test for tar, which in turn increases the likelihood of inquiry

about smoking status (R1 ← R2 ← R3).

We now show that for this preliminary hypothesis, if the investigator were to utilize

the procedure described in [Bhattacharya et al., 2019b] she may conclude that it is

not possible to identify the full law. We go on to show that such a conclusion would

be incorrect, as the full law is, in fact, identified, and provide an alternative means of

identification.

Scenario 1. Consider the missing data DAG model in Fig. 4-1(a) by excluding the

edge X(1)
2 → R3, corresponding to the first hypothesis put forth by the investigator.

The propensity score for R1 can be obtained by simple conditioning, noting that

R1 ⊥⊥ R3 | X(1)
3 , R2 by d-separation. Hence, p(R1 | paG(R1)) = p(R1 | X(1)

3 , R2) =

p(R1 | X3, R2, R3 = 1).

Conditioning is not sufficient in order to identify the propensity score for R2, as

R2 ̸⊥⊥ R1 | X(1)
1 , R3. However, it can be shown that in the distribution q(V \R1 | R1 =

1) ≡ p(V )
p(R1=1|paG(R1)) , R2 ⊥⊥ R1 | X1, R3 = 1, since this distribution is Markov relative

to the graph in Fig. 4-1(b) (see the Appendix for details). We use the notation q(· | ·)
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Figure 4-1: (a) The missing data DAG used in scenario 1 (without the dashed edge
X

(1)
2 → R3) and scenario 2 (with the dashed edge X(1)

2 → R3) (b) Conditional DAG
corresponding to the missing data DAG in (a) after fixing R1, i.e., inverse weighting
by the propensity score of R1.

to indicate that while q acts in most respects as a conditional distribution, it was not

obtained from p(V ) by a conditioning operation. This implies that the propensity

score for R2 (evaluated at R = 1) is identified as q(R2 | X1, R3 = 1, R1 = 1).

Finally, we show that the algorithm in [Bhattacharya et al., 2019b] is unable to

identify the propensity score for R3. We first note that R3 ̸⊥⊥ R1 | X(1)
1 in the original

problem. Furthermore, as shown in Fig. 4-1(b), fixing R1 leads to a distribution where

R3 is necessarily selected on as the propensity score p(R1 | paG(R1)) is identified

by restricting the data to cases where R3 = 1. It is thus impossible to identify the

propensity score for R3 in this post-fixing distribution. The same holds if we try to

fix R2 as identification of the propensity score for R2 required us to first fix R1, which

we have seen introduces selection bias on R3.

Hence, the procedure in [Bhattacharya et al., 2019b] fails to identify both the

target law and the full law for the problem posed in Fig. 4-1(a). However, both these

distributions are, in fact, identified as we now demonstrate.

A key observation is that even though the identification of p(R3 | X(1)
1 ) might not

be so straightforward, p(R3 | X(1)
1 , R2) is indeed identified, because by d-separation

95



R3 ⊥⊥ R1 | X(1)
1 , R2, and therefore p(R3 | X(1)

1 , R2) = p(R3 | X1, R2, R1 = 1). Given

that p(R3 | X(1)
1 , R2) and p(R2 | X(1)

1 , R3 = 1) are both identified (the latter is obtained

through as described earlier), we consider exploiting an odds ratio parameterization

of the joint density p(R2, R3 | paG(R2, R3)) = p(R2, R3 | X(1)
1 ). As we show below,

such a parameterization immediately implies the identifiability of this density and

consequently, the individual propensity scores for R2 and R3.

Given disjoint sets of variables A,B,C and reference values A = a0, B = b0, the

odds ratio parameterization of p(A,B | C), given in [Chen, 2007], is as follows:

1
Z
× p(A | b0, C)× p(B | a0, C)×OR(A,B | C), (4.1)

where

OR(A = a,B = b | C) = p(A = a | B = b, C)
p(A = a0 | B = b, C) ×

p(A = a0 | B = b0, C)
p(A = a | B = b0, C) ,

and Z is the normalizing term and is equal to

∑︂
A,B

p(A | B = b0, C)× p(B | A = a0, C)×OR(A,B | C).

Note that OR(A,B | C) = OR(B,A | C), i.e., the odds ratio is symmetric; see [Chen,

2007].

A convenient choice of reference value for the odds ratio in missing data problems

is the value Ri = 1. Given this reference level and the parameterization of the joint

in Eq. (4.1), we know that p(R2, R3 | X(1)
1 ) = 1

Z × p(R2 | R3 = 1, X(1)
1 ) × p(R3 | R2 =

1, X(1)
1 )×OR(R2, R3 | X(1)

1 ), where Z is the normalizing term, and

OR(R2 = r2, R3 = r3 | X(1)
1 ) = p(R3 = r3 | R2 = r2, X

(1)
1 )

p(R3 = 1 | R2 = r2, X
(1)
1 )

× p(R3 = 1 | R2 = 1, X(1)
1 )

p(R3 = r3 | R2 = 1, X(1)
1 )

.

The conditional pieces p(R2 | R3 = 1, X(1)
1 ) and p(R3 | R2 = 1, X(1)

1 ) are already

shown to be functions of the observed data. To see that the odds ratio is also a

function of observables, recall that R3 ⊥⊥ R1 | R2, X
(1)
1 . This means that R1 = 1 can
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be introduced into each individual piece of the odds ratio functional above, making it

so that the entire functional depends only on observed quantities. Since all pieces of

the odds ratio parameterization are identified, we can conclude that p(R2, R3 | X(1)
1 ) is

identified as the normalizing term is always identified if all the conditional pieces and

the odds ratio are identified. This result, in addition to the fact that p(R1 | R2, X
(1)
3 )

is identified as before, leads us to the identification of both the target law and the full

law, as the missingness process p(R | X(1)) is identified.

Scenario 2. Suppose the investigator is interested in testing an alternate hypoth-

esis to see whether detecting high levels of particulate matter in the lungs, also serves

as an indicator to physicians that a diagnostic test for bronchitis should be ordered.

This corresponds to the missing data DAG model in Fig. 4-1(a) by including the edge

X
(1)
2 → R3. Since this is a strict super model of the previous example, the procedure

in [Bhattacharya et al., 2019b] still fails to identify the target and full laws in a similar

manner as before.

However, it is still the case that both the target and full laws are identified. The

justification for why the odds ratio parameterization of p(R2, R3 | paG(R2, R3)) =

p(R2, R3 | X(1)
1 , X

(1)
2 ) is identified in this scenario, is more subtle. We have,

p(R2, R3 | X(1)
1 , X

(1)
2 ) = 1

Z
× p(R2 | R3 = 1, X(1)

1 , X
(1)
2 )× p(R3 | R2 = 1, X(1)

1 , X
(1)
2 )

×OR(R2, R3 | X(1)
1 , X

(1)
2 ).

Note that R2 ⊥⊥ X
(1)
2 | R3, X

(1)
1 , and R3 ⊥⊥ R1 | R2, X

(1)
1 , X

(1)
2 . Therefore, p(R2 |

R3 = 1, X(1)
1 , X

(1)
2 ) = p(R2 | R3 = 1, X(1)

1 ) is identified the same way as described

in Scenario 1, and p(R3 | R2 = 1, X(1)
1 , X

(1)
2 ) = p(R3 | R1 = 1, R2 = 1, X1, X2) is a

function of the observed data and hence is identified. Now the identification of

p(R2, R3 | X(1)
1 , X

(1)
2 ) boils down to identifiability of the odds ratio term. By symmetry,

we can express the odds ratio OR(R2, R3 | X(1)
1 , X

(1)
2 ) in two different ways,
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OR(R2, R3 | X(1)
1 , X

(1)
2 ) = p(R2 | R3, X

(1)
1 )

p(R2 = 1 | R3, X
(1)
1 )
× p(R2 = 1 | R3 = 1, X(1)

1 )
p(R2 | R3 = 1, X(1)

1 )

= p(R3 | R2, X
(1)
1 , X

(1)
2 )

p(R3 = 1 | R2, X
(1)
1 , X

(1)
2 )
× p(R3 = 1 | R2 = 1, X(1)

1 , X
(1)
2 )

p(R3 | R2 = 1, X(1)
1 , X

(1)
2 )

.

The first equality holds by d-separation (R2 ⊥⊥ X
(1)
2 | R3, X

(1)
1 ). This implies

that OR(R2, R3 | X(1)
1 , X

(1)
2 ) is not a function of X(1)

2 . Let us denote this functional

by f1(R2, R3, X
(1)
1 ). On the other hand, we can plug-in R1 = 1 to pieces in the

second equality since R3 ⊥⊥ R1 | R2, X
(1)
1 , X

(1)
2 (by d-separation.) This implies

that OR(R2, R3 | X(1)
1 , X

(1)
2 ) is a function of X(1)

1 only through its observed values

(i.e. X1). Let us denote this functional by f2(R2, R3, X1, X
(1)
2 , R1 = 1). Since odds

ratio is symmetric (by definition), then it must be the case that f1(R2, R3, X
(1)
1 ) =

f2(R2, R3, X1, X
(1)
2 , R1 = 1); concluding that f2 cannot be a function of X(1)

2 , as the

left hand side of the equation does not depend on X
(1)
2 . This renders f2 to be a

function of only observed quantities, i.e. f2 = f2(R2, R3, X1, R1 = 1). This leads to

the conclusion that p(R2, R3 | X(1)
1 , X

(1)
2 ) is identified and consequently the missingness

process p(R | X(1)) in Fig. 4-1(a) is identified. According to Remarks 1 and 2, both

the target and full laws are identified.

Adding any directed edge to Fig. 4-1(a) (including the dashed edge) allowed by

missing data DAGs results in either a self-censoring edge (X(1)
i → Ri) or a special

kind of collider structure called the colluder (X(1)
j → Ri ← Rj), that we first defined

in [Bhattacharya et al., 2019b]. We discuss in detail, the link between identification of

missing data models of a DAG and the absence of these structures in Section 4.3.

Scenario 3. So far, the investigator has conducted preliminary analyses of the

problem while ignoring the issue of unmeasured confounding. In order to address

this issue, she first posits an unmeasured confounder U1, corresponding to genotypic

traits that may predispose certain individuals to both smoke and develop bronchitis.

She posits another unmeasured confounder U2, corresponding to the occupation of
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an individual, that may affect both the deposits of tar found in their lungs (for e.g.,

construction workers may accumulate more tar than an accountant due to occupational

hazards) as well as limit an individual’s access to proper healthcare, leading to the

absence of a diagnostic test for bronchitis.

The missing data DAG with unmeasured confounders, corresponding to the afore-

mentioned hypothesis is shown in Fig. 4-2(a) (excluding the dashed edges). The

corresponding missing data ADMG, obtained by latent projection is shown in Fig. 4-

2(b) (excluding the dashed bidirected edge). A procedure to identify the full law of

such an MNAR model, that is nested Markov with respect to a missing data ADMG,

is absent from the current literature. The question that arises, is whether it is possible

to adapt the odds ratio parameterization from the previous scenarios, to this setting.

We first note that by application of the chain rule of probability and Markov

restrictions, the missingness mechanism still factorizes in the same way as in Scenario

2, i.e., p(R | X(1)) = p(R1 | R2, X
(1)
3 )× p(R2, R3 | X(1)

1 , X
(1)
2 ) [Tian and Pearl, 2002].

Despite the addition of the bidirected edgesX(1)
1 ↔ X

(1)
3 andX(1)

2 ↔ R3, corresponding

to unmeasured confounding, it is easy to see that the propensity score for R1 is still

identified via simple conditioning. That is, p(R1 | paG(R1)) = p(R1 | X3, R2, R3 = 1)

as R1 ⊥⊥ R3 | X(1)
3 , R2 by m-separation. Furthermore, it can also be shown that the two

key conditional independences that were exploited in the odds ratio parameterization

of p(R2, R3 | X(1)), still hold in the presence of these additional edges. In particular,

R2 ⊥⊥ X
(1)
2 | R3, X

(1)
1 , and R3 ⊥⊥ R1 | R2, X

(1)
1 , X

(1)
2 , by m-separation. Thus, the same

odds ratio parameterization used for identification of the full law in Scenario 2, is also

valid for Scenario 3. The full odds ratio parameterization of the MNAR models in

Scenarios 2 and 3 is provided in Appendix VI.

Scenario 4. Finally, the investigator notices that a disproportionate number

of missing entries for smoking status and diagnosis of bronchitis, correspond to

individuals from certain neighborhoods in the city. She posits that such missingness
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Figure 4-2: (a) The missing data DAG with unobserved confounders used in scenario
3 (without the dashed edges) and scenario 4 (with the dashed edges). (b) The
corresponding missing data ADMGs obtained by applying the latent projection rules
to the hidden variable DAG in (a).

may be explained by systematic biases in the healthcare system, where certain ethnic

minorities may not be treated with the same level of care. This corresponds to adding

a third unmeasured confounder U3, which affects the ordering of a diagnostic test for

bronchitis as well as inquiry about smoking habits, as shown in Fig. 4-2(a) (including

the dashed edges.) The corresponding missing data ADMG is shown in Fig. 4-2(b)

(including the bidirected dashed edge.) Once again, we investigate if the full law

is identified, in the presence of an additional unmeasured confounder U3, and the

corresponding bidirected edge R1 ↔ R3.

The missingness mechanism p(R | X(1)) in Fig. 4-2(b) (including the dashed edge)

no longer follows the same factorization as the one described in Scenarios 2 and 3, due

to the presence of a direct connection between R1 and R3. According to [Tian and Pearl,

2002], this factorization is given as p(R | X(1)) = p(R1 | R2, R3, X
(1)
1 , X

(1)
2 , X

(1)
3 ) ×

p(R2 | R3, X
(1)
1 ) × p(R3 | X(1)

1 , X
(1)
2 ). Unlike the previous scenarios, the propensity

score of R1, p(R1 | R2, R3, X
(1)
1 , X

(1)
2 , X

(1)
3 ), includes X(1)

1 , X
(1)
2 , and R3 past the

conditioning bar. Thus, the propensity score of R1 seems to be not identified, since
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there is no clear way of breaking down the dependency between R1 and X
(1)
1 . The

problematic structure is the path X
(1)
1 → R3 ↔ R1 which contains a collider at R3

that opens up when we condition on R3 in the propensity score of R1.

In light of the discussion in previous scenarios, another possibility for identifying

p(R | X(1)) is through analysis of the odds ratio parameterization of the entire

missingness mechanism. In Section 4.3, we provide a description of the general odds

ratio parameterization on an arbitrary number of missingness indicators. For brevity,

we avoid re-writing the formula here. We simply point out that the first step in

identifying the missingness mechanism via the odds ratio parameterization is arguing

whether conditional densities of the form p(Ri | R \Ri = 1, X(1)) are identified, which

is true if Ri ⊥⊥ X
(1)
i | R \Ri, X

(1) \X(1)
i .

Such independencies do not hold in Fig. 4-2(b) (including the dashed edge) for any

of the Rs, since there exist collider paths between every pair (X(1)
i , Ri) that render

the two variables dependent when we condition on everything outside X(1)
i , Ri (by m-

separation). Examples of such paths are X(1)
1 → R3 ↔ R1 and X(1)

2 ↔ R3 ↔ R1 ← R2

and X
(1)
3 → R1 ↔ R3.

In Section 4.4, we show that the structures arising in the missing data ADMG

presented in Fig. 4-2(b) (including the dashed edge), give rise to MNAR models that

are provably not identified without further assumptions.

4.3 Full Law Identification in DAGs

[Bhattacharya et al., 2019b] proved that two graphical structures, namely the self-

censoring edge (X(1)
i → Ri) and the colluder (X(1)

j → Ri ← Rj), prevent the identifi-

cation of full laws in missing data models of a DAG. In this section we exploit an odds

ratio parameterization of the missing data process to prove that these two structures

are, in fact, the only structures that prevent identification, thus yielding a complete
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characterization of identification for the full law in missing data DAG models.

We formally introduce the odds ratio parameterization of the missing data process

introduced in [Chen, 2007], as a more general version of the simpler form mentioned

earlier in Eq. (4.1). Assuming we have K missingness indicators, p(R | X(1), O) can

be expressed as follows.

p(R | X(1), O) = 1
Z
×

K∏︂
k=1

p(Rk | R−k = 1, X(1), O)

×
K∏︂
k=2

OR(Rk, R≺k | R≻k = 1, X(1), O), (4.2)

where R−k = R \Rk, R≺k = {R1, . . . , Rk−1}, R≻k = {Rk+1, . . . , RK}, and

OR(Rk, R≺k | R≻k = 1, X(1), O) = p(Rk | R≻k = 1, R≺k, X
(1), O)

p(Rk = 1 | R≻k = 1, R≺k, X(1), O)

× p(Rk = 1 | R−k = 1, X(1), O)
p(Rk | R−k = 1, X(1), O) .

Z in Eq. (4.2) is the normalizing term and is equal to∑︁r{
∏︁K
k=1 p(rk | R−k = 1, X(1), O)×∏︁K

k=2 OR(rk, r≺k | R≻k = 1, X(1), O)}.

Using the odds ratio reparameterization given in Eq. (4.2), we now show that

under a standard positivity assumption, stating that p(R | X(1), O) > δ > 0, with

probability one for some constant δ, the full law p(R,X(1), O) of a missing data DAG

is identified in the absence of self-censoring edges and colluders. Moreover, if any of

these conditions are violated, the full law is no longer identified. We formalize this

result below.

Theorem 7. A full law p(R,X(1), O) that is Markov relative to a missing data DAG

G is identified if G does not contain edges of the form X
(1)
i → Ri (no self-censoring)

and structures of the form X
(1)
j → Ri ← Rj (no colluders), and the stated positivity

assumption holds. Moreover, the resulting identifying functional for the missingness

mechanism p(R | X(1), O) is given by the odds ratio parameterization provided in

Eq. 4.2, and the identifying functionals for the target law and full law are given by

Remarks 1 and 2.
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In what follows, we show that the identification theory that we have proposed

for the full law in missing data models of a DAG is sound and complete. Soundness

implies that when our procedure succeeds, the model is in fact identified, and the

identifying functional is correct. Completeness implies that when our procedure fails,

the model is provably not identified (non-parametrically). These two properties allow

us to derive a precise boundary for what is and is not identified in the space of missing

data models that can be represented by a DAG.

Theorem 8. The graphical condition of no self-censoring and no colluders, put forward

in Theorem 7, is sound and complete for the identification of full laws p(R,O,X(1))

that are Markov relative to a missing data DAG G.

We now state an important result that draws a connection between missing data

models of a DAG G that are devoid of self-censoring and colluders, and the itemwise

conditionally independent nonresponse (ICIN) model described in [Shpitser, 2016,

Sadinle and Reiter, 2017]. As a substantive model, the ICIN model implies that no

partially observed variable directly determines its own missingness, and is defined by

the restrictions that for every pair X(1)
i , Ri, it is the case that X(1)

i ⊥⊥ Ri | R−i, X
(1)
−i , O.

We utilize this result in the course of proving Theorem 8.

Lemma 7. A missing data model of a DAG G that contains no self-censoring edges

and no colluders, is a submodel of the ICIN model.

4.4 Full Law Identification in ADMGs

We now generalize identification theory of the full law to scenarios where some variables

are not just missing, but completely unobserved, corresponding to the issues faced

by the analyst in Scenarios 3 and 4 of Section 4.2. That is, we shift our focus to the

identification of full data laws that are (nested) Markov with respect to a missing

data ADMG G.
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Figure 4-3: All possible colluding paths between X
(1)
i and Ri. Each pair of dashed

edges imply that the presence of either (or both) result in formation of a colluding
path.

Previously, we noted that the absence of colluders and self-censoring edges in a

missing data DAG G imply a set of conditional independence restrictions of the form

X
(1)
i ⊥⊥ Ri | R−i, X

(1)
−i , O, for any pair X(1)

i ∈ X(1) and Ri ∈ R. We now describe

necessary and sufficient graphical conditions that must hold in a missing data ADMG G

to imply this same set of conditional independences. Going forward, we ignore (without

loss of generality), the deterministic factors p(X | X(1), R), and the corresponding

deterministic edges in G, in the process of defining this graphical criterion.

A colliding path between two vertices A and B is a path on which every non-

endpoint node is a collider. We adopt the convention that A → B and A ↔ B are

trivially collider paths. We say there exists a colluding path between the pair (X(1)
i , Ri)

if X(1)
i and Ri are connected through at least one non-deterministic colliding path i.e.,

one which does not pass through (using deterministic edges) variables in X.

We enumerate all possible colluding paths between a vertex X
(1)
i and its corre-

sponding missingness indicator Ri in Fig. 4-3. Note that both the self-censoring

structure and the colluding structure introduced in [Bhattacharya et al., 2019b] are

special cases of a colluding path. Using the m-separation criterion for ADMGs, it is

possible to show that a missing data model of an ADMG G that contains no colluding
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paths of the form shown in Fig. 4-3, is also a submodel of the ICIN model in [Shpitser,

2016, Sadinle and Reiter, 2017].

Lemma 8. A missing data model of an ADMG G that contains no colluding paths is

a submodel of the ICIN model.

This directly yields a sound criterion for identification of the full law of missing

data models of an ADMG G using the odds ratio parameterization as before.

Theorem 9. A full law p(R,X(1), O) that is Markov relative to a missing data ADMG

G is identified if G does not contain any colluding paths and the stated positivity

assumption in Section 4.3 holds. Moreover, the resulting identifying functional for

the missingness mechanism p(R | X(1), O) is given by the odds ratio parametrization

provided in Eq. 4.2.

We now address the question as to whether there exist missing data ADMGs which

contain colluding paths but whose full laws are nevertheless identified. We show (see

Appendix for proofs), that the presence of a single colluding path of any of the forms

shown in Fig. 4-3, results in a missing data ADMG G whose full law p(X(1), R,O)

cannot be identified as a function of the observed data distribution p(X,R,O).

Lemma 9. A full law p(R,X(1), O) that is Markov relative to a missing data ADMG G

containing a colluding path between any pair X(1)
i ∈ X(1) and Ri ∈ R is not identified.

Revisiting our example in scenario 4, we note that every (Ri, X
(1)
i ) pair is connected

through at least one colluding path. Therefore, according to Lemma 9, the full law in

Fig. 4-2(a) including the dashed edge, is not identified. It is worth emphasizing that

the existence of at least one colluding path between any pair (Ri, X
(1)
i ) is sufficient to

conclude that the full law is not identified.

In what follows, we present a result on the soundness and completeness of our

graphical condition that represents a powerful unification of non-parametric identifica-
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tion theory in the presence of non-ignorable missingness and unmeasured confounding.

To our knowledge, such a result is the first of its kind. We present the theorem below.

Theorem 10. The graphical condition of the absence of colluding paths, put forward

in Theorem 9, is sound and complete for the identification of full laws p(X(1), R,O)

that are Markov relative to a missing data ADMG G.

Throughout this chapter, we have focused on identification of the full law which,

according to Remark 1, directly yields identification for the target law. However,

identification of the full law is a sufficient but not necessary condition for identification

of the target law. In other words, the target law may still be identified despite the

presence of colluding paths. Fig. 4(a) in [Bhattacharya et al., 2019b] is an example of

such a case.

4.5 Conclusions

In this chapter, we closed an important open problem in the non-parametric identifi-

cation theory of missing data models represented via directed acyclic graphs, possibly

in the presence of unmeasured confounders. We provided a simple graphical condition

to check if the full law, Markov relative to a (hidden variable) missing data DAG, is

identified. We further proved that these criteria are sound and complete. Moreover,

we provided an identifying functional for the missingness process, through an odds

ratio parameterization that allows for congenial specification of components of the

likelihood. Our results serve as an important precondition for the development of

score-based model selection methods that consider a broader class of missing data

distributions than the ones considered in prior works. An interesting avenue for future

work is exploration of the estimation theory of functionals derived from the identified

full data law. To conclude, we note that while identification of the full law is sufficient

to identify the target law, there exist identified target laws where the corresponding full
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law is not identified. We leave a complete characterization of target law identification

to future work.
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Chapter 5

Discussions and Conclusions

Making valid causal and statistical inferences is complicated by many types of biases in

data. The aim of this thesis is to provide useful tools to mitigate some of these biases

in our data analyses. Examples of biases that we considered and discussed include

confounding bias induced by common causes of observed exposures and outcomes,

bias in estimation induced by high dimensional data and curse of dimensionality,

discriminatory bias encoded in data that reflect historical patterns of discrimination and

inequality, and missing data bias where instantiations of variables are systematically

missing. We used tools from statistics, optimization theory, and graphical models to

understand and address these issues.

There are certain assumptions that enable us to tackle both identification and

estimation problems in causal inference. For instance, the proposed complete iden-

tification algorithm in [Shpitser and Pearl, 2006] assumes that the causal model is

representable by a known graphical model. However, the causal model may not be

known a priori. Under certain assumptions, the causal graph or a family of equivalent

causal graphs can be identified from available data. This has been widely studied

under the heading of structure learning (a.k.a. causal discovery in the literature).

There is a rich literature on model selection from observational data in the context of

causal inference [Spirtes et al., 2000]. This includes constraint-based algorithms such

as PC [Spirtes et al., 2000, Colombo and Maathuis, 2014], score-based algorithms such

108



as GES [Chickering, 2002b], and continuous optimization based algorithms such as

the ones in [Zheng et al., 2018, Bhattacharya et al., 2020].

Evaluating cause-effect relationships provides us with aggregated population-level

information on whether a certain treatment is effective or not. However, in order to

account for inherent heterogeneity among individuals and optimize individual-level

experiences, we might be interested in personalized interventions, where treatment is

assigned according to a policy that takes into account the individual prior history;

hence it is not fixed across individuals. For instance, personalized medicine aims

at systematic use of individual patient history including biological information and

biomarkers to improve patient’s health care. Personalized actions can be viewed as

realizations of decision rules where available information is mapped to the space of

possible decisions. Making good personalized decisions often involves acting in multiple

stages. For instance, multiple successive medical interventions may be required for

long-term care of patients with chronic diseases. The goal of personalized medicine

is to tailor a sequence of decision rules on treatment, known as dynamic treatment

regimes or policies, based on patient characteristics seen so far, to maximize the

likelihood of a desirable outcome. A number of algorithms have been developed for

estimating optimal treatment regimes [Chakraborty and Moodie, 2013].

A natural step in causal inference is to understand the mechanisms by which

the treatment influences the outcome. Understanding causal mechanisms may lead

to designing better policies by optimizing a part of the effect of the treatment on

the outcome. For example, we may wish to maximize the chemical effect of a drug

given data from an observational study where the chemical effect of the drug on the

outcome is entangled with the indirect effect mediated by differential adherence. In

such cases, we may wish to optimize the direct effect of a drug, while keeping the

indirect effect to that of some reference treatment. Policies of this type may be more

directly relevant in precision medicine contexts where adherence varies among patients.
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In prior work, we derived a variety of methods for learning high quality policies of this

type by combining tools from causal mediation analysis and reinforcement learning

[Nabi et al., 2018].

In classical causal inference, inferring cause-effect relations from data relies on

the assumption that units are independent and identically distributed (iid). This

assumption is often implausible and is violated in settings where units are related

through a network of dependencies, known as interference. The most common example

is that of infectious diseases where treatment of one individual may have a protective

effect on others in the population. There is a growing literature on causal inference

with interference and dependent data [Nabi et al., 2020e, Bhattacharya et al., 2019a,

Sherman and Shpitser, 2018]

Despite the fascinating methodological advances in the field of causal inference over

the past few decades, there still remain many open problems and exciting challenges

in this research area. In future, we plan to pursue multiple directions to continue to

provide solutions to open problems and bridge the gap between theory and scientific

applications in healthcare, social justice, public policy, and social science.
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Appendix I

Overview of Nested Markov Models

Here, we introduce the necessary graphical preliminaries to describe the nested Markov

factorization of an ADMG that captures all equality constraints on the observed

margin p(V ). Given a DAG G(V ∪U) where U contains variables that are unobserved,

the latent projection operator onto the observed margin produces an acyclic directed

mixed graph G(V ) that consists of directed and bidirected edges [Verma and Pearl,

1990a]. The bidirected connected components of an ADMG G(V ), partition the

vertices V into distinct sets known as districts. The district membership of a vertex

Vi in G is denoted disG(Vi), and the set of all districts in G is denoted D(G).

CADMGs and Kernels

The nested Markov factorization of p(V ) relative to an ADMG G(V ) is defined with

the use of conditional distributions known as kernels and their associated conditional

ADMGs (CADMGs) that are derived from p(V ) and G(V ) respectively, via repeated

applications of the fixing operator [Richardson et al., 2017]. A CADMG G(V,W ), is

an ADMG whose nodes can be partitioned into random variables V and fixed variables

W, with the restriction that only outgoing edges may be adjacent to variables in W.

A kernel qV (V | W ) is a mapping from values of W to normalized densities over V.

That is, ∑︁V qV (V | W = w) = 1,∀w ∈ W [Lauritzen, 1996]. For any set of variables
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X ⊆ V, marginalization and conditioning in a kernel are defined as follows.

qV \X(V \X | W ) ≡
∑︂
X

qV (V | W ), and

qV (V \X | X,W ) ≡ qV (V | W )
qV (X | W ) .

The notation qV (· | X) makes clear which variables appearing past the “conditioning”

bar in a kernel are fixed as opposed to simply conditioned on. That is, if a variable

Xi ̸∈ V, then it is fixed, else it is conditioned on.

Fixing and Fixability

A variable A ∈ V is said to be fixable if the paths A→ · · · → X and A↔ · · · ↔ X do

not both exist for all X ∈ V \ {A}. Given a CADMG G(V,W ) where A is fixable, the

graphical operator of fixing, denoted ϕA(G), yields a new CADMG G(V \ A,W ∪ A)

with all incoming edges into A being removed, and A being set to a fixed value a.

Given a kernel qV (V | W ), the corresponding probabilistic operation of fixing, denoted

ϕA(qV ;G) yields a new kernel

qV \A(V \ A | W ∪ A) ≡ qV (V | W )
qV (A | mbG(A),W ) ,

where mbG(A) is the Markov blanket of A, defined as the bidirected connected com-

ponent (district) of A (excluding A itself) and the parents of the district of A, i.e.,

mbG(A) ≡ disG(A) ∪ paG(disG(A)) \ {A}. It is easy to check that when G is a DAG,

i.e., there are no bidirected edges, the denominator in the probabilistic operation of

fixing, reduces to the familiar definition of a simple propensity score.

The notion of fixability can be extended to a set of variables S ⊆ V as follows. A set

S is said to be fixable if elements in S can be ordered into a sequence σS = ⟨S1, S2, . . . ⟩

such that S1 is fixable in G, S2 is fixable in ϕS1(G), and so on. This notion of fixability

on sets of variables is essential to the description of the nested Markov model that we

present in the following section.
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Z1 Z2 T Y

(a) G

p(V ) = p(Z2 | Z1)× p(Z1)× p(T, Y | Z1, Z2)

Z1 z2 T Y

(b) ϕZ2(G)

qZ1,T,Y (Z1, T, Y | Z2) = p(Z1)× p(T, Y | Z1, Z2)

z1 z2 T Y

(c) ϕ{Z1,Z2}(G)

qT,Y (T, Y | Z1, Z2) = ∑︁
Z1 p(Z1)× p(T, Y | Z1, Z2)

z1 z2 t Y

(d) ϕ{Z1,Z2,T}(G)

qY (Y | T, Z1, Z2) =
∑︁

Z1
p(Z1)×p(T,Y |Z1,Z2)∑︁

Z1
p(Z1)×p(T |Z1,Z2)

Figure I-1: An example to illustrate fixing and kernel operations.

Occasionally, fixing operations may also simplify to marginalization or conditioning

events. We illustrate these concepts with a simple example.

Example I.1. Consider the ADMG shown in Fig. I-1(a) and fix the kernel of interest

to be qY (Y | T, Z1, Z2), i.e., a kernel where all other variables except Y are fixed. A

valid fixing sequence in order to obtain such a kernel from the joint p(V ) is (Z2, Z1, T ).

Fixing Z2 entails dividing by the simple conditional p(Z2 | Z1) and yields the CADMG

ϕZ2(G) and corresponding kernel qZ1,T,Y (Z1, T, Y | Z2) shown in Fig. I-1(b). In order

to fix Z1, we must divide by the kernel qZ1,T,Y (Z1 | Z2, T, Y ). By rules of conditioning

and marginalization in kernels,

qZ1,T,Y (Z1 | Z2, T, Y ) ≡ qZ1,T,Y (Z1, T, Y | Z2)
qZ1,T,Y (T, Y | Z2)

≡ qZ1,T,Y (Z1, T, Y | Z2)∑︁
Z1 qZ1,T,Y (Z1, T, Y | Z2)

Fixing Z1 and evaluating the above expression gives us the CADMG and corresponding

kernel shown in Fig. I-1(c). That is, fixing Z1 in the kernel qZ1,T,Y (Z1 | Z2, T, Y ),

simplifies to marginalization of Z1. Finally, applying rules of conditioning and marginal-

ization to the kernel qT,Y (T, Y | Z1, Z2) we can obtain the kernel qT,Y (T | Z1, Z2, Y ).

Dividing by this corresponds to fixing T, giving us the CADMG and desired kernel

shown in Fig. I-1(d).
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Nested Markov Factorization

Given a CADMG G, A set S ⊆ V is said to be reachable if there exists a valid sequence

of fixing operations on vertices V \S. Further, S is said to be intrinsic if it is reachable,

and forms a single bidirected connected component or district in ϕσV \S(G), i.e., the

CADMG obtained upon executing all fixing operations given by a valid fixing sequence

σV \S.

A distribution p(V ) is said to obey the nested Markov factorization relative to an

ADMG G(V ) if for every fixable set S, and any valid fixing sequence σS,

ϕσS(p(V );G) =
∏︂

D∈D(ϕσS (G))
qD(D | paϕσS (G)(D)),

where all kernels appearing in the product above can be constructed by combining

kernels corresponding to intrinsic sets i.e., {qI(I | paG(I)) | I is intrinsic in G}. Such a

construction is made possible by the fact that all the sets D quantified in the product

are districts in a reachable graph derived from G.

It was noted in [Richardson et al., 2017] that when a distribution p(V ) is nested

Markov relative to an ADMG G, all valid fixing sequences yield the same CADMG and

kernel so that recursive applications of the fixing operator on a set V \ S can simply

be denoted as ϕV \S(G) and ϕV \S(qV ;G) without explicitly specifying any particular

valid order. Thus, the construction of the set of kernels corresponding to intrinsic

sets can be characterized as {qI(I | paG(I)) | I is intrinsic in G} = {ϕV \I(p(V ;G)) |

I is intrinsic in G}, and the nested Markov factorization can be re-stated more simply

as, for every fixable set S we have,

ϕS(p(V ;G)) =
∏︂

D∈D
(︂
ϕS(G)

)︂ϕV \D(p(V );G),

An important result from [Richardson et al., 2017] states that if p(V ∪ U) is Markov

relative to a DAG G(V ∪ U), then p(V ) is nested Markov relative to the ADMG G(V )

obtained by latent projection.
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Binary Parameterization of Nested Markov Models

From the above factorization, it is clear that intrinsic sets given their parents form

the atomic units of the nested Markov model. Using this observation, a smooth

parameterization of discrete nested Markov models was provided by [Evans and

Richardson, 2014]. We now provide a short description of how to derive the so-called

Moebius parameters of a binary nested Markov model.

For each district D ∈ D(G), consider all possible subsets S ⊆ D. If S is intrinsic

(that is, reachable and bidirected connected in ϕV \S(G)), define the head H of the

intrinsic set to be all vertices in S that are childless in ϕV \S(G), and the tail T to be all

parents of the head in the CADMG ϕV \S(G), excluding the head itself. More formally,

H ≡ {Vi ∈ S | chϕ
V \S(G)(Vi) = ∅}, and T ≡ paϕ

V \S(G)
(H) \H. The corresponding set

of Moebius parameters for this intrinsic head and tail pair parameterizes the kernel

qS(H = 0 | T ), i.e., the kernel where all variables outside the intrinsic set S are fixed,

and all elements of the head are set to zero given the tail. Note that these parameters

are, in general, variationally dependent (in contrast to variationally independent in

the case of an ordinary DAG model) as the heads and tails in these parameter sets

may overlap. The joint density for any query p(V = v), can be obtained through

the Moebius inversion formula; see [Lauritzen, 1996, Evans and Richardson, 2014]

for details. For brevity, we will denote qS(H = 0 | T ) as simply q(H = 0 | T ), as

it will be clear from the given context what variables are still random in the kernel

corresponding to a given intrinsic set.
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Appendix II

Overview of Semiparametric
Theory

Assume a statistical model M = {pη(Z) : η ∈ Γ} where Γ is the parameter space and

η is the parameter indexing a specific model. We are often interested in a function

ψ : η ∈ Γ ↦→ ψ(η) ∈ R; i.e., a parameter that maps the distribution Pη to a scalar

number in R, such as an identified average causal effect. (For brevity, we sometimes

use ψ instead of ψ(η), which should be obvious from context.) Truth is denoted

by Pη0 and ψ0. An estimator ˆ︁ψn of a scalar1 parameter ψ based on n i.i.d copies

Z1, . . . , Zn drawn from pη(Z), is asymptotically linear if there exists a measurable

random function Uψ(Z) with mean zero and finite variance such that

√
n× ( ˆ︁ψn − ψ) = 1√

n
×

n∑︂
i=1

Uψ(Zi) + op(1), (II.1)

where op(1) is a term that converges in probability to zero as n goes to infinity. The

random variable Uψ(Z) is called the influence function of the estimator ˆ︁ψn. The term

influence function comes from the robustness literature [Hampel, 1974].

Before mentioning the asymptotic properties of an asymptotically linear estimator,

it is worth noting that in asymptotic theory, we can sometimes construct super

efficient estimators, e.g. Hodges estimator, that have undesirable local properties
1Here, our focus is on estimation of ψ = E[Y (t)] which is a scalar parameter. For an extension to

a vector valued functional in Rq, q > 1, refer to [Tsiatis, 2007, Bickel et al., 1993].
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associated with them. Therefore, the analysis is oftentimes restricted to regular2 and

asymptotically linear (RAL) estimators to avoid such complications. Although most

reasonable estimators are RAL, regular estimators do exist that are not asymptotically

linear. However, as a consequence of [Hájek, 1970] representation theorem, the most

efficient regular estimator is asymptotically linear; hence, it is reasonable to restrict

attention to RAL estimators. According to [Newey, 1990], the influence function of a

RAL estimator is the same as the influence function of its estimand. Further, there is

a bijective correspondence between RAL estimators and influence functions.

By a simple consequence of the central limit theorem and Slutsky’s theorem, it is

straightforward to show that the RAL estimator ˆ︁ψn is consistent and asymptotically

normal (CAN), with asymptotic variance equal to the variance of its influence function

Uψ,

√
n× ( ˆ︁ψn − ψ) d−→ N

(︂
0, var(Uψ)

)︂
. (II.2)

The first step in dealing with a semiparametric model, is to consider a simpler finite-

dimensional parametric submodel that is contained within the semiparametric model

and it contains the truth. Consider a (regular) parametric submodel Msub = {Pηκ :

κ ∈ [0, 1) where Pηκ=0 = Pη0} of the model M. Given Pη0 , define the corresponding

score to be Sη0(Z) = d

dκ
log pηκ(Z)

⃓⃓⃓⃓
κ=0

. It is known that

d

dκ
ψ(ηκ)

⃓⃓⃓⃓
κ=0

= E
[︃
Uψ(Z)× Sη0(Z)

]︃
, (II.3)

where ψ(ηκ) is the target parameter in the parametric submodel, Uψ(Z) is the corre-

sponding influence function evaluated at law Pη0 , Sη0(Z) is the score of the law Pη0 ,

and the expectation is taken with respect to Pη0 . Equation II.3 provides an easy way

to derive an influence function for the parameter ψ. In the next subsection, we use
2Given a collection of probability laws M, an estimator ˆ︁ψ of ψ(P ) is said to be regular in M at

P if its convergence to ψ(P ) is locally uniform [van der Vaart, 2000].
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this equation to derive an influence function for our target ψ = E[Y (t)] and discuss

its properties.

Influence functions provide a geometric view of the behavior of RAL estimators.

Consider a Hilbert space3 H of all mean-zero scalar functions, equipped with an inner

product defined as E[h1× h2], h1, h2 ∈ H. The tangent space in the modelM, denoted

by Λ, is defined to be the mean-square closure of parametric submodel tangent spaces,

where a parametric submodel tangent space is the set of elements Ληκ = {αSηκ(Z)}, α

is a constant and Sηκ is the score for the parameter ψηκ for some parametric submodel.

In mathematical form, Λ = [Ληκ ].

The tangent space Λ is a closed linear subspace of the Hilbert space H (Λ ⊆ H).

The orthogonal complement of the tangent space, denoted by Λ⊥, is defined as

Λ⊥ = {h ∈ H | E[h× h′] = 0,∀h′ ∈ Λ}. Note that H = Λ⊕ Λ⊥, where ⊕ is the direct

sum, and Λ ∩ Λ⊥ = {0}. Given an arbitrary element h ∈ Λ⊥, it holds that for any

submodel Msub, with score Sη0 corresponding to Pη0 , E[h× Sη0 ] = 0. Consequently,

using Eq. II.3, h+ Uψ(Z) is also an influence function. The vector space Λ⊥ is then

of particular importance because we can now construct the class of all influence

functions, denoted by U , as U = Uψ(Z) + Λ⊥. Upon knowing a single IF Uψ(Z) and

the tangent space orthogonal complement Λ⊥, we can obtain the class of all possible

RAL estimators that admit the CAN property.

Out of all the influence functions in U there exists a unique one which lies in the

tangent space Λ, and which yields the most efficient RAL estimator by recovering the

semiparametric efficiency bound. This efficient influence function can be obtained by

projecting any influence function, call it U∗
ψ, onto the tangent space Λ. This operation

is denoted by U effψ = π[U∗
ψ | Λ], where U eff

ψ denotes the efficient IF.

On the other hand, if the tangent space contains the entire Hilbert space, i.e., Λ =
3The Hilbert space of all mean-zero scalar functions is the L2 space. For a precise definition of

Hilbert spaces see [Luenberger, 1997].
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H, then the statistical model M is called a nonparametric model. In a nonparametric

model, we only have one influence function since Λ⊥ = {0}. This unique influence

function can be obtained via Eq. II.3 and corresponds to the efficient influence function

U eff
ψ (the unique element in the tangent space Λ) in the nonparametric model M.

For a detailed description of the concepts outlined here, please refer to [Tsiatis, 2007,

Bickel et al., 1993].
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Appendix III

Supplementary Materials for
Primal Fixability

Theorem 1 (Nonparametric influence function of augmented
primal IPW)
Proof. The target parameter is identified via the following function of the observed
data,

ψκ(t) =
∑︂
V \T

Y ×
∏︂

Mi∈M
pκ(Mi | mpG(Mi))|T=t ×

∑︂
T

∏︂
Li∈L

pκ(Li | mpG(Li))× pκ(C),

(III.1)

and according to Eq. II.3, d
dκ
ψκ(t)

⃓⃓
κ=0 = E

[︁
Uψt × Sη0(V )]︁. Therefore,

d

dκ
ψκ(t) =

d

dκ

{︂∑︂
V \T

Y ×
∏︂
Mi∈M

pκ(Mi | mpG(Mi))|T=t ×
∑︂
T

∏︂
Li∈L\T

pκ(Li | mpG(Li)) × pκ(T,C)
}︂

=
∑︂
V \T

Y ×
d

dκ

{︂ ∏︂
Mi∈M

pκ(Mi | mpG(Mi))|T=t

}︂
×
∑︂
T

∏︂
Li∈L\T

pκ(Li | mpG(Li)) × pκ(T,C) (1st Term)

+
∑︂
V \T

Y ×
∏︂
Mi∈M

pκ(Mi | mpG(Mi))|T=t ×
∑︂
T

d

dκ

{︂ ∏︂
Li∈L\T

pκ(Li | mpG(Li))
}︂

× pκ(T,C) (2nd Term)

+
∑︂
V \T

Y ×
∏︂
Mi∈M

pκ(Mi | mpG(Mi))|T=t ×
∑︂
T

∏︂
Li∈L\T

pκ(Li | mpG(Li)) ×
d

dκ

{︂
pκ(T,C)

}︂
. (3rd Term)

First Term: The contribution of the first term to the final IF is made of individual

contributions of the elements in M. Since the derivation is similar, we only derive it

for an element Mj ∈M.
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∑︂
V \T

Y ×
∏︂

Mi∈{≺Mj }∩M

pκ(Mi | mpG(Mi))|T=t ×
d

dκ

{︂
pκ(Mj | mpG(Mj))|T=t

}︂
×

∏︂
Mi∈{≻Mj }∩M

pκ(Mi | mpG(Mi))|T=t ×
∑︂
T

∏︂
Li∈L

pκ(Li | mpG(Li)) × pκ(C)

(1)
=

∑︂
V \{T,{⪯Mj }}

∏︂
Mi∈{≺Mj }∩M

pκ(Mi | mpG(Mi))|T=t ×
d

dκ

{︂
pκ(Mj | mpG(Mj))|T=t

}︂
×

∑︂
T∪{≻Mj }

Y ×
∏︂

Vi∈L∪{{≻Mj }∩M}

pκ(Vi | mpG(Vi))
⃓⃓⃓
T=t if Vi∈M

× pκ(C)

(2)
=
∑︂
⪯Mj

I(T = t)∏︁
Li≺Mj

p(Li | mpG(Li))
× S(Mj | mpG(Mj)) ×

∏︂
Vi∈{⪯Mj }

p(Vi | mpG(Vi))

×
∑︂

T∪{≻Mj }

Y ×
∏︂

Vi∈L∪{{≻Mj }∩M}

p(Vi | mpG(Vi))
⃓⃓⃓
T=t if Vi∈M

(3)
= E

[︃
I(T = t)∏︁

Li≺Mj
p(Li | mpG(Li))

×
∑︂

T∪{≻Mj }

Y ×
∏︂

Vi∈L∪{{≻Mj }∩M}

p(Vi | mpG(Vi))
⃓⃓⃓
T=t if Vi∈M⏞ ⏟⏟ ⏞

:=f(⪯Mj )

× S(Mj | mpG(Mj))
]︃

(4)
= E

[︃
I(T = t)∏︁

Li≺Mj
p(Li | mpG(Li))

×
(︂
f(⪯ Mj) −

∑︂
Mj

f(⪯ Mj) × p(Mj | mpG(Mj))
)︂

× S(Mj | mpG(Mj))
]︃

(5)
= E

[︃
I(T = t)∏︁

Li≺Mj
p(Li | mpG(Li))

×
(︂
f(⪯ Mj) −

∑︂
Mj

f(⪯ Mj) × p(Mj | mpG(Mj))
)︂

× S(V )
]︃

The first equality follows from the fact that terms corresponding to Mi ∈ {≺ Mj}

are not functions of elements in {≻ Mj} and of Y . The second equality follows by

term grouping, the definition of conditional scores, and term cancellation. The third

equality is by definition of joint expectation. The fourth and fifth equalities are implied

by the fact that conditional scores have expected value of 0 (given their conditioning

set). Therefore, the contribution of Mj ∈M is the following:

I(T = t)∏︁
Li≺Mj

p(Li | mpG(Li))
×
(︂ ∑︂
T∪{≻Mj }

Y ×
∏︂

Vi∈L∪{{≻Mj }∩M}

p(Vi | mpG(Vi))
⃓⃓⃓
T=t if Vi∈M

−
∑︂

T∪{⪰Mj }

Y ×
∏︂

Vi∈L∪{{⪰Mj }∩M}

p(Vi | mpG(Vi))
⃓⃓⃓
T=t if Vi∈M

)︂
.

Second Term: The contribution of the second term to the final IF is made of
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individual contributions of the elements in L \ T. Since the derivation is similar, we

only derive it for an element Lj ∈ L \ T.

∑︂
V \T

Y ×
∏︂
Mi∈M

pκ(Mi | mpG(Mi))|T=t ×
∑︂
T

{︂ ∏︂
Li∈{≺Lj }∩L\T

pκ(Li | mpG(Li))

×
d

dκ

{︂
pκ(Lj | mpG(Lj))

}︂
×

∏︂
Li∈{≻Lj }∩L\T

pκ(Li | mpG(Li))
}︂

× pκ(T,C)

(1)
=
∑︂
V

Y ×
∏︂

Vi∈{≻Lj }

pκ(Vi | mpG(Vi))
⃓⃓
T=t if Vi∈M

×
d

dκ

{︂
pκ(Lj | mpG(Lj))

}︂
×

∏︂
Vi∈{≺Lj }

pκ(Vi | mpG(Vi))
⃓⃓
T=t if Vi∈M

(2)
=
∑︂
⪯Lj

∑︂
≻Lj

Y ×
∏︂

Vi∈{≻Lj }

p(Vi | mpG(Vi))
⃓⃓
T=t if Vi∈M⏞ ⏟⏟ ⏞

f(⪯Lj )

×S(Lj | mpG(Lj))

×
∏︂

Vi∈{⪯Lj }

p(Vi | mpG(Vi))
⃓⃓
T=t if Vi∈M

(3)
=
∑︂
⪯Lj

f(⪯ Lj) ×

∏︁
Mi∈M∩{≺Lj } p(Mi | mpG(Mi))

⃓⃓
T=t∏︁

Mi∈M∩{≺Lj } p(Mi | mpG(Mi))
× S(Lj | mpG(Lj)) ×

∏︂
Vi∈{⪯Lj }

p(Vi | mpG(Vi))

(4)
= E

[︃∏︁
Mi∈M{∩≺Lj } p(Mi | mpG(Mi))

⃓⃓
T=t∏︁

Mi∈M∩{≺Lj } p(Mi | mpG(Mi))
× f(⪯ Lj) × S(Lj | mpG(Lj))

]︃
(5)
= E

[︃∏︁
Mi∈M∩{≺Lj } p(Mi | mpG(Mi))

⃓⃓
T=t∏︁

Mi∈M∩{≺Lj } p(Mi | mpG(Mi))
×
(︂
f(⪯ Lj) −

∑︂
Lj

f(⪯ Lj) × p(Lj | mpG(Lj))
)︂

× S(Lj | mpG(Lj))
]︃

(6)
= E

[︃∏︁
Mi∈M∩{≺Lj } p(Mi | mpG(Mi))

⃓⃓
T=t∏︁

Mi∈M∩{≺Lj } p(Mi | mpG(Mi))
×
(︂
f(⪯ Lj) −

∑︂
Lj

f(⪯ Lj) × p(Lj | mpG(Lj))
)︂

× S(V )
]︃

The first equality follows from the fact that terms corresponding to Mi ∈ M

are not functions of T , the fact that C,M,L partition V , and term grouping. The

second equality is by definition of conditional scores. The third equality is by term

cancellation. The fourth is by definition of joint expectations, the fifth and sixth

equalities are implied by the fact that conditional scores have expected value of 0 (given

their conditioning set). Therefore, the contribution of Lj ∈ L \ T is the following:

∏︁
Mi∈M∩{≺Lj } p(Mi | mpG(Mi))

⃓⃓
T=t∏︁

Mi∈M∩{≺Lj } p(Mi | mpG(Mi))
×
(︂∑︂

≻Lj

Y ×
∏︂

Vi∈{≻Lj }

p(Vi | mpG(Vi))
⃓⃓
T=t if Vi∈M

−
∑︂
⪰Lj

Y ×
∏︂

Vi∈{⪰Lj }

p(Vi | mpG(Vi))
⃓⃓
T=t if Vi∈M

)︂
.
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Third Term: The contribution of the last term to the final IF is as follows.∑︂
V \T

Y ×
∏︂
Mi∈M

pκ(Mi | mpG(Mi))|T=t ×
∑︂
T

∏︂
Li∈L\T

pκ(Li | mpG(Li)) ×
d

dκ

{︂
pκ(T,C)

}︂
(1)
=
∑︂
T,C

{︂ ∑︂
V \T,C

Y ×
∏︂
Mi∈M

pκ(Mi | mpG(Mi))|T=t ×
∏︂

Li∈L\T

pκ(Li | mpG(Li))⏞ ⏟⏟ ⏞
f(T,C)

}︂
×

d

dκ

{︂
pκ(T,C)

}︂
.

(2)
=
∑︂
T,C

f(T,C) × S(T,C) × p(T,C) = E
[︂
f(T,C) × S(T,C)

]︂
(3)
= E
[︂(︂
f(T,C) −

∑︂
T,C

f(T,C) × p(T,C)
)︂

× S(T,C)
]︂

(4)
= E
[︂(︂
f(T,C) − ψ(t)

)︂
× S(V )

]︂
.

The first equality is term grouping, the second is by definition of marginal scores, the

third and fourth equalities are implied by the fact that scores have expected value 0.

Therefore, the contribution of the last term is the following:

∑︂
V \{T,C}

Y ×
∏︂
Mi∈M

p(Mi | mpG(Mi))
⃓⃓
T=t

×
∏︂

Li∈L\T

p(Li | mpG(Li)) − ψ(t).

Putting all these together yields the final influence function.

Lemma 1 (Double robustness of augmented primal IPW)

Proof. We need to show that under correct specification of conditional densities in

either {p(Mi | mpG(Mi)), ∀Mi ∈ M} or {p(Li | mpG(Li)),∀Li ∈ L}, the influence

function in Theorem 1 remains to be mean zero. We break this down into two

scenarios.

Scenario 1. Assume models in L are correctly specified, and let p∗(Mi | mpG(Mi))

denote the misspecified model for p(Mi | mpG(Mi)),∀Mi ∈M. We note that for any

Lj ∈ L \ T, the following line in the IF evaluates to zero in expectation.

123



E
[︂ ∏︁

Mi≺Lj
p∗(Mi | mpG(Mi))|T=t∏︁

Mi≺Lj
p∗(Mi | mpG(Mi))

(︂ ∑︂
≻Lj

Y ×
∏︂

Li∈L∩{≻Lj }

p(Li | mpG(Li)) ×
∏︂

Mi∈M∩{≻Lj }

p∗(Mi | mpG(Mi))|T=t

−
∑︂
⪰Lj

Y ×
∏︂

Li∈L∩{⪰Lj }

p(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Lj }

p∗(Mi | mpG(Mi))|T=t

)︂ ]︂
(1)
=
∑︂
⪯Lj

∏︁
Mi≺Lj

p∗(Mi | mpG(Mi))|T=t∏︁
Mi≺Lj

p∗(Mi | mpG(Mi))
×
∏︂
Vi≺Lj

p(Vi | mpG(Vi)) × p(Lj × mpG(Lj))

×
(︂ ∑︂

≻Lj

Y ×
∏︂

Li∈L∩{≻Lj }

p(Li | mpG(Li)) ×
∏︂

Mi∈M∩{≻Lj }

p∗(Mi | mpG(Mi))|T=t

−
∑︂
⪰Lj

Y ×
∏︂

Li∈L∩{⪰Lj }

p(Li | mpG(Li)) ×
∏︂

Mi∈M∩{≻Lj }

p∗(Mi | mpG(Mi))|T=t

)︂
(2)
=
∑︂
≺Lj

∏︁
Mi≺Lj

p∗(Mi | mpG(Mi))|T=t∏︁
Mi≺Lj

p∗(Mi | mpG(Mi))
×
∏︂
Vi≺Lj

p(Vi | mpG(Vi)) ×
∑︂
Lj

p(Lj × mpG(Lj))

×
(︂ ∑︂

≻Lj

Y ×
∏︂

Li∈L∩{≻Lj }

p(Li | mpG(Li)) ×
∏︂

Mi∈M∩{≻Lj }

p∗(Mi | mpG(Mi))|T=t

−
∑︂
⪰Lj

Y ×
∏︂

Li∈L∩{⪰Lj }

p(Li | mpG(Li)) ×
∏︂

Mi∈M∩{≻Lj }

p∗(Mi | mpG(Mi))|T=t

)︂
(3)
=
∑︂
≺Li

∏︁
Mi≺Lj

p∗(Mi | mpG(Mi))|T=t∏︁
Mi≺Lj

p∗(Mi | mpG(Mi))
×
∏︂
Vi≺Lj

p(Vi | mpG(Vi))

×
(︂ ∑︂

⪰Lj

Y ×
∏︂

Li∈L∩{⪰Lj }

p(Li | mpG(Li)) ×
∏︂

Mi∈M∩{≻Lj }

p∗(Mi | mpG(Mi))|T=t

−
∑︂
⪰Lj

Y ×
∏︂

Li∈L∩{⪰Lj }

p(Li | mpG(Li)) ×
∏︂

Mi∈M∩{≻Lj }

p∗(Mi | mpG(Mi))|T=t

)︂
(4)
= 0.

The first equality is by definition of joint expectation. The second equality is by the

fact that terms associated with ≺ Lj are not functions of Lj . The third equality is by

term grouping.

Moreover, for any Mj,Mj−1 ∈M, the following equality holds,

E

[︃
I(T = t)∏︁

Li≺Mj
p(Li | mpG(Li))

×
∑︂

T∪{⪰Mj }

Y ×
∏︂
Li∈L

p(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Mj }

p∗(Mi | mpG(Mi)) |T=t

]︃

= E

[︃
I(T = t)∏︁

Li≺Mj−1
p(Li | mpG(Li))

×
∑︂

T∪{≻Mj−1}

Y ×
∏︂
Li∈ L

p(Li | mpG(Li)) ×
∏︂

Mi∈M∩{≻Mj−1}

p∗(Mi | mpG(Mi)) |T=t

]︃
,
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since the left hand side is equal to∑︂
≺Mi

p(≺ Mi) ×
I(T = t)∏︁

Li≺Mj
p(Li | mpG(Li))

×
[︂ ∑︂
T∪{⪰Mj }

Y ×
∏︂
Li∈ L

p(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Mj }

p∗(Mi | mpG(Mi)) |T=t

]︂
(1)
=
∑︂

⪯Mj−1

p(⪯ Mi−1) ×
{︃ ∑︂
Mj−1≺Lk≺Mj

I(T = t)∏︁
Li≺Mj

p(Li | mpG(Li))
× p(Lk | mpG(Lk))

×
[︂ ∑︂
T∪{⪰Mj }

Y ×
∏︂
Li∈ L

p(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Mj }

p∗(Mi | mpG(Mi)) |T=t

]︂}︃
(2)
=
∑︂

⪯Mj−1

p(⪯ Mj−1) ×
I(T = t)∏︁

Li≺Mj−1
p(Li | mpG(Li))

×
∑︂

Mj−1≺Lk≺Mj

{︃ ∑︂
T∪{⪰Mj }

Y ×
∏︂
Li∈ L

p(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Mj }

p∗(Mi | mpG(Mi)) |T=t

}︃
(3)
=
∑︂

⪯Mj−1

p(⪯ Mj−1) ×
I(T = t)∏︁

Li≺Mj−1
p(Li | mpG(Li))

×
{︃ ∑︂
T∪{≻Mj−1}

Y ×
∏︂
Li∈ L

p(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Mj }

p∗(Mi | mpG(Mi)) |T=t

}︃
(4)
= E

[︃
I(T = t)∏︁

Li≺Mj−1
p(Li | mpG(Li))

×
{︂ ∑︂
T∪{≻Mj−1}

Y ×
∏︂
Li∈ L

p(Li | mpG(Li)) ×
∏︂

Mi∈{M∩≻Mj−1}

p∗(Mi | mpG(Mi)) |T=t

}︂]︃
,

which is exactly the same as the right hand side. This leaves the IF with only two

terms ψ(t) and βprimal and according to Lemma 2, E[βprimal] = ψ(t), provided the

models in L are correctly specified, which was assumed. Therefore, E[Uψt ] = 0.

Scenario 2. Assume models in M are correctly specified, and let p∗(Li | mpG(Li))

denote the misspecified model for p(Li | mpG(Li)),∀Li ∈ L. We note that for any

Mj ∈M, the following line in the IF evaluates to zero.
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E
[︂ I(T = t)∏︁

Li≺Mj
p∗(Li | mpG(Li))

(︂ ∑︂
T∪{≻Mj }

Y ×
∏︂
Li∈ L

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{≻Mj }

p(Mi | mpG(Mi))|T=t

−
∑︂

T∪{⪰Mj }

Y ×
∏︂
Li∈ L

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Mj }

p(Mi | mpG(Mi))|T=t

)︂]︂
(1)
=
∑︂
⪯Mj

I(T = t)∏︁
Li≺Mj

p∗(Li | mpG(Li))
×
∏︂

Vi≺Mj

p(Vi | mpG(Vi)) × p(Mj | mpG(Mj))

×
(︂ ∑︂

T∪{≻Mj }

Y ×
∏︂
Li∈ L

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{≻Mj }

p(Mi | mpG(Mi))|T=t

−
∑︂

T∪{⪰Mj }

Y ×
∏︂
Li∈ L

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Mj }

p(Mi | mpG(Mi))|T=t

)︂
(2)
=
∑︂
≺Mj

I(T = t)∏︁
Li≺Mj

p∗(Li | mpG(Li))
×
∏︂

Vi≺Mj

p(Vi | mpG(Vi)) ×
∑︂
Mj

p(Mj | mpG(Mj))

×
(︂ ∑︂
T∪{≻Mj }

Y ×
∏︂
Li∈ L

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{≻Mj }

p(Mi | mpG(Mi))|T=t

−
∑︂

T∪{⪰Mj }

Y ×
∏︂
Li∈ L

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Mj }

p(Mi | mpG(Mi))|T=t

)︂
(3)
=
∑︂
≺Mj

I(T = t)∏︁
Li≺Mj

p∗(Li | mpG(Li))
×
∏︂

Vi≺Mj

p(Vi | mpG(Vi))

×
(︂ ∑︂

T∪{⪰Mj }

Y ×
∏︂
Li∈ L

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Mj }

p(Mi | mpG(Mi))|T=t

−
∑︂

T∪{⪰Mj }

Y ×
∏︂
Li∈ L

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Mj }

p(Mi | mpG(Mi))|T=t

)︂
(4)
= 0.

Moreover, for any Lj, Lj−1 ∈ L, the following equality holds,

E
[︂ ∏︁

Mi≺Lj
p(Mi | mpG(Mi))|T=t∏︁

Mi≺Lj
p(Mi | mpG(Mi))

×
∑︂
⪰Lj

Y ×
∏︂

Li∈L∩{⪰Lj }

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Lj }

p(Mi | mpG(Mi)) |T=t

]︂
E
[︂ ∏︁

Mi≺Lj−1
p(Mi | mpG(Mi))|T=t∏︁

Mi≺Lj−1
p(Mi | mpG(Mi))

×
∑︂

≻Lj−1

Y ×
∏︂

Li∈L∩{≻Lj−1}

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{≻Lj−1}

p(Mi | mpG(Mi)) |T=t

]︂
,

since the left hand side is equal to
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∑︂
≺Lj

p(≺ Lj) ×

∏︁
Mi≺Lj

p(Mi | mpG(Mi))|T=t∏︁
Mi≺Lj

p(Mi | mpG(Mi))

×
∑︂
⪰Lj

Y ×
∏︂

Li∈L∩{⪰Lj }

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Lj }

p(Mi | mpG(Mi)) |T=t

(1)
=
∑︂

⪯Lj−1

p(⪯ Lj−1) ×
{︃ ∑︂
Lj−1≺Mk≺Lj

∏︁
Mi≺Lj

p(Mi | mpG(Mi))|T=t∏︁
Mi≺Lj

p(Mi | mpG(Mi))
× p(Mk | mpG(Mk))

×
∑︂
⪰Lj

Y ×
∏︂

Li∈L∩{⪰Lj }

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Lj }

p(Mi | mpG(Mi)) |T=t

}︃
(2)
=
∑︂

⪯Lj−1

p(⪯ Lj−1) ×

∏︁
Mi≺Lj−1

p(Mi | mpG(Mi))|T=t∏︁
Mi≺Lj−1

p(Mi | mpG(Mi))
×
{︃ ∑︂
Lj−1≺Mk≺Lj

p(Mk | mpG(Mk))|T=t

×
∑︂
⪰Lj

Y ×
∏︂

Li∈L∩{⪰Lj }

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Lj }

p(Mi | mpG(Mi)) |T=t

}︃}︃
(3)
=
∑︂

⪯Lj−1

p(⪯ Lj−1) ×

∏︁
Mi≺Lj−1

p(Mi | mpG(Mi))|T=t∏︁
Mi≺Lj−1

p(Mi | mpG(Mi))
×

×
{︃ ∑︂
Lj−1≺Mk≺Lj

[︂∑︂
⪰Lj

Y ×
∏︂

Li∈L∩{⪰Lj }

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{⪰Lj }

p(Mi | mpG(Mi)) |T=t

]︂
× p(Mk | mpG(Mk))|T=t

}︃
(4)
=
∑︂

⪯Lj−1

p(⪯ Lj−1) ×

∏︁
Mi≺Lj−1

p(Mi | mpG(Mi))|T=t∏︁
Mi≺Lj−1

p(Mi | mpG(Mi))

×
∑︂

≻Lj−1

Y ×
∏︂

Li∈L∩{≻Lj−1}

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{≻Lj−1}

p(Mi | mpG(Mi)) |T=t

}︃
(5)
= E

[︃ ∏︁
Mi≺Lj−1

p(Mi | mpG(Mi))|T=t∏︁
Mi≺Lj−1

p(Mi | mpG(Mi))

×
∑︂

≻Lj−1

Y ×
∏︂

Li∈L∩{≻Lj−1}

p∗(Li | mpG(Li)) ×
∏︂

Mi∈M∩{≻Lj−1}

p(Mi | mpG(Mi)) |T=t

]︃
,

which is exactly the same as the right hand side. This leaves the IF with only two terms

ψ(t) and βdual and according to Lemma ??, E[βdual] = ψ(t). Therefore, E[Uψt ] = 0.

Lemma 2 (Primal and Dual IPWs)

Proof. Our goal is to demonstrate that the primal IPW formulation is equivalent to

the identifying functional of the target parameter ψ(t) shown in Eq. 2.2 and restated

below.
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ψ(t) =
∑︂
V \T

∏︂
Vi∈V \DT

p(Vi | mpG(Vi))
⃓⃓⃓⃓
T=t
×
∑︂
T

∏︂
Di∈DT

p(Di | mpG(Di))× Y.

The primal IPW formulation for the target ψ(t) is,

E[βprimal(t)] ≡ E
[︄

I(T = t)
qDT (T | mbG(T )) × Y

]︄

where qDT (DT | paG(DT )) = ∏︁
Vi∈DT p(Vi | mpG(Vi)), and

qDT (T | mbG(T )) = qDT (T | DT ∪ paG(DT ) \ T ) = qDT (DT | paG(DT ))
qDT (DT \ T | paG(DT ))

= qDT (DT | paG(DT ))∑︁
T qDT (DT | paG(DT )) =

∏︁
Vi∈DT p(Vi | mpG(Vi))∑︁

T

∏︁
Vi∈DT p(Vi | mpG(Vi))

=
∏︁
Vi∈L p(Vi | mpG(Vi))∑︁

T

∏︁
Vi∈L p(Vi | mpG(Vi))

.

The last equality holds because the conditional densities of Vi ∈ C, does not depend

on T, and they cancel out from the numerator and denominator. Therefore, product in

the ratio is over the variables in DT ∩ {⪰ T} which we have denoted by L. Therefore,

E[βprimal(t)] = E
[︃
I(T = t)×

∑︁
T

∏︁
Di∈L p(Di | mpG(Di))∏︁

Di∈L p(Di | mpG(Di))
× Y

]︃
=
∑︂
V

∏︂
Vi∈V

p(Vi | mpG(Vi))× I(T = t)×
∑︁
T

∏︁
Di∈L p(Di | mpG(Di))∏︁

Di∈L p(Di | mpG(Di))
× Y

=
∑︂
V

I(T = t)×
∏︂

Vi∈V \L
p(Vi | mpG(Vi))

×
∏︂
Di∈L

p(Di | mpG(Di))×
∑︁
T

∏︁
Di∈L p(Di | mpG(Di))∏︁

Di∈L p(Di | mpG(Di))
× Y

=
∑︂
V

I(T = t)×
∏︂

Vi∈V \L
p(Vi | mpG(Vi))×

∑︂
T

∏︂
Di∈L

p(Di | mpG(Di))× Y.

In the second equality, we evaluated the outer expectation with respect to the joint

p(V ). In the third equality, we partitioned the joint into factors for the set L and

factors for V \ L. In the fourth equality, we canceled out the the factors involved in

the denominator of the primal IPW with the corresponding terms in the joint.

We can then move the conditional factors of pre-treatment variables in the district

of T past the summation over T as these factors are not functions of T. Finally, we

evaluate the indicator function, concluding the proof. That is,
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ψprimal =
∑︂
V

I(T = t)×
∏︂

Vi∈V \DT

p(Vi | mpG(Vi))×
∑︂
T

∏︂
Di∈DT

p(Di | mpG(Di))× Y

=
∑︂
V \T

∏︂
Vi∈V \DT

p(Vi | mpG(Vi))
⃓⃓⃓⃓
T=t
×
∑︂
T

∏︂
Di∈DT

p(Di | mpG(Di))× Y = ψ(t)

The proof strategy is similar to the one used for the primal IPW. The dual IPW

formulation for the target ψ(t) is,

E[βdual(t)] = E
[︃∏︁

Mi∈mp−1
G (T ) p(Mi | mpG(Mi)) |T=t∏︁

Mi∈mp−1
G (T ) p(Mi | mpG(Mi))

× Y
]︃

=
∑︂
V

∏︂
Vi∈V

p(Vi | mpG(Vi))×

∏︁
Mi∈mp−1

G (T ) p(Mi | mpG(Mi)) |T=t∏︁
Mi∈mp−1

G (T ) p(Mi | mpG(Mi))
× Y

=
∑︂
V

∏︂
Vi∈V \mp−1

G (T )

p(Vi | mpG(Vi))

×
∏︂

Mi∈mp−1
G (T )

p(Mi | mpG(Mi))×

∏︁
Mi∈mp−1

G (T ) p(Mi | mpG(Mi)) |T=t∏︁
Mi∈mp−1

G (T ) p(Mi | mpG(Mi))
× Y

=
∑︂
V

∏︂
Vi∈V \mp−1

G (T )

p(Vi | mpG(Vi))×
∏︂

Mi∈mp−1
G (T )

p(Mi | mpG(Mi)) |T=t × Y

=
∑︂
V \T

∏︂
Vi∈V \{mp−1

G (T )∪DT }

p(Vi | mpG(Vi))×
∏︂

Mi∈mp−1
G (T )

p(Mi | mpG(Mi)) |T=t

×
∑︂
T

∏︂
DT

p(Di | mpG(Di))× Y.

In the above derivation, we first evaluated the outer expectation with respect to

the joint p(V ). We then partitioned the joint into factors corresponding to mp−1
G (T )

and V \ mp−1
G (T ). The factors involved in the denominator of the dual IPW then

canceled out with the corresponding terms in the joint. The last equality holds because

by the definition of the inverse Markov pillow, mp−1
G (T ) contains all variables not

in the district of T such that T is a member of its Markov pillow. In the above

expression, factors corresponding to the inverse Markov pillow of T are evaluated at
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T = t. Consequently, the only factors above that are still functions of T are the ones

corresponding to the district of T. This allows us to push the summation over T .

Finally, since the summation over T will prevent factors within the district of

T from being evaluated at T = t, we can simply apply the evaluation to the entire

functional and merge the sets not involved in the district of T above. That is,

ψdual =
∑︂
V \T

∏︂
Vi∈V \DT

p(Vi | mpG(Vi))×
∑︂
T

∏︂
Di∈DT

p(Di | mpG(Di))× Y
⃓⃓⃓⃓
T=t

= ψ(t).
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Appendix IV

Supplementary Materials for Causal
SDR

A. Details and Additional Results

Assume treatment is collected using p equally spaced percentages of volume. In other

words, treatment is assumed to be a vector in Rp where the ith element corresponds to

the radiation dose on q% of the parotid glands. The effect of radiation on weight loss is

illustrated in Fig. IV-1 by allowing p to be 10 and 20, and reducing the size of treatment

to one dimension. We use IPW estimators to calculate the effects. Both plots agree

with our stated conclusion in the main body of the manuscript, i.e., radiation has a

negative effect on weight loss.

B. Proofs

Lemma 3 An estimator for β which solves (2.12) under the correct specification of

p(T | C), and either one of ℓ(g(T ; β)) ≡ Eq[Y | g(T ; β)] or ν(g(T ; β)) ≡ Eq[α(T ) |

g(T ; β)], is consistent.

Proof. Choosing ϕ(T,C) = 0 in Theorem 2 yields (2.12). All elements of the ortho-

complement of the nuisance tangent space are mean zero under the true distribution
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Figure IV-1: Heatmaps to illustrate the causal effect of radiation on weight loss, where
effects are computed by estimating β via IPW estimator and treatment is collected
using (a) 10, (b) 20 equally spaced percentages of volume in parotid glands.

(we give an argument for elements of ˜︁Λ⊥
η in Proposition IV). Since ˜︁U(β) exhibits

double robustness, i.e. remaining consistent if either ℓ(g(T ; β)) or ν(g(T ; β)) is cor-

rectly specified [Ma and Zhu, 2012], the correct specification of p(T | C) yields our

conclusion.

Proposition IV For all Ũ(β∗) ∈ ˜︁Λ⊥
η , E[ ˜︁U(β∗)] = 0.

Proof. The second and third terms of ˜︁U(β∗) are mean zero by construction. The first
term, under truth with the property that Eq[Y | T ] = Eq[Y | g(T ; β)], is

E
[︂ p∗(T )
p(T | C) ×

˜︁U(β)
]︂

=
∫︂ ˜︁U(β)× p(Y | T,C)× p∗(T )× p(C) dµY,T,C

=
∫︂ {︁

Y − ℓ(g(T ;β))
}︁
×
{︁
α(T )− ν(g(t;β))

}︁
× q(Y, T, C) dµY,T,C

= Eq
[︂{︁
Y − ℓ(g(t;β))

}︁
×
{︁
α(T )− ν(g(t;β))

}︁]︂
= Eq

[︂{︁
α(T )− ν(g(t;β))

}︁
× Eq

[︁{︁
Y − ℓ(g(t;β))

}︁
| T = t

]︁]︂
= Eq

[︂{︁
α(T )− ν(g(t;β))

}︁
×
{︁
Eq[Y | T = t]− ℓ(g(t;β))

}︁]︂
= 0.
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since ℓ(g(t; β)) := Eq[Y | T = t]. Note that even if ℓ(g(t; β)) is miss-specified, the

expectation will still be zero if ν(g(t; β)) is correctly specified, shown by iterative

expectations.

Theorem 2 The orthogonal complement of the nuisance tangent space ˜︁Λ⊥
η for M

contains elements of the form

˜︁Λ⊥
η =

{︃ ˜︁U(β)
Wt(C) − ϕ(T,C) + E[ϕ(T,C) | C]

}︃
,

where ϕ(T,C) is an arbitrary function of T and C, Wt(C) is the IPW weight p(T =

t | C)/p∗(t) for a fixed p∗(t), and ˜︁U(β) is of the form

˜︁U(β) =
{︂
Y − ℓ(g(t; β))

}︂
×
{︂
α(T )− ν(g(t; β))

}︂
,

where ℓ(g(t; β)) ≡ Eq[Y | g(t; β)] and ν(g(t; β)) ≡ Eq[α(T ) | g(T ; β)]. Moreover,

the most efficient estimator in this class, for any fixed α(T ), is recovered by setting

ϕopt(T,C) = E
[︃ ˜︁U(β)
Wt(C) | T,C

]︃
.

Proof. This is a direct consequence of Theorems 3.1 and 3.2 in [Robins, 1999], and

results in Appendix 3 of [Ma and Zhu, 2012].

Lemma 4 For a fixed choice of α(T ) and normalized function p∗(T ), the element
˜︁U(β∗) ∈ ˜︁Λ⊥

η corresponding to the optimal choice of ϕ(T,C) has the form.

p∗(T )
p(T | C) ×

˜︁U(β)− p∗(T )
p(T | C) × E

[︂ ˜︁U(β)
⃓⃓⃓
T,C

]︂
+ Eq

[︂
E
[︂ ˜︁U(β)

⃓⃓⃓
T,C

]︂⃓⃓⃓
C
]︂
,
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where Eq[.] is the expectation taken with respect to the density q(Y, T, C) ≡ p(Y |

T,C)× p∗(T )× p(C).

Proof. Plugging in the optimal ϕ(T,C) yields ˜︁U(β∗) to be

p∗(T )
p(T | C) ×

˜︁U(β)− E
[︃
p∗(T )
p(T | C)

˜︁U(β)
⃓⃓⃓⃓
T,C

]︃
+ E

[︃
E
[︃
p∗(T )
p(T | C)

˜︁U(β)
⃓⃓⃓⃓
T,C

]︃⃓⃓⃓⃓
C

]︃
.

The conclusion follows, since

E
[︄
E
[︄
p∗(T )
p(T | C)

˜︁U(β)
⃓⃓⃓⃓
⃓T,C

]︄⃓⃓⃓⃓
⃓C
]︄

= E
[︄
p∗(T )
p(T | C)E

[︂ ˜︁U(β)
⃓⃓⃓
T,C

]︂⃓⃓⃓⃓⃓C
]︄

=
∫︂ p∗(T )
p(T | C) E[ ˜︁U(β) | T,C] p(Y, T | C) dµY,T

=
∫︂

E[ ˜︁U(β) | T,C] p(Y | T,C) p∗(T ) dµY,T

=
∫︂
E[ ˜︁U(β) | T,C] q(Y, T | C) dµY,T

= Eq
[︃
E
[︂ ˜︁U(β) | T,C

]︂⃓⃓⃓⃓
C
]︃
.

Lemma 5 If one of
{︂
p(T | C), E[ ˜︁U(β) | T,C]

}︂
and one of

{︂
ℓ(g(T ; β)) ≡ Eq[Y |

g(T ; β)], ν(g(T ; β)) ≡ Eq[α(T ) | g(T ; β)]
}︂

is correctly specified, then the estimator

for β based on (2.13) is consistent and asymptotically normal with mean zero and

variance equal to τ−1 × Var
(︂ ˜︁U(β∗)

)︂
× τ−1′

, where ˜︁U(β∗) is given in (2.13) and τ is

defined as E[∂˜︁U(β∗)
∂β

].

Proof. Assume either ℓ(g(T ; β)) or ν(g(T ; β)), and p(T | C) are correctly specified.

Consequently, the second and third terms in the expression of ˜︁U(β∗) are both mean
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zero, even under an incorrect specification of E[ ˜︁U(β) | T,C]. Following the same the

argument in Proposition IV, the first term is zero if either ℓ(g(T ; β)) or ν(g(T ; β)) is

correctly specified.
Assume either ℓ(g(T ; β)) or ν(g(T ; β)), and E[ ˜︁U(β) | T,C] are correctly specified.

Consequently, the first two terms in the expression of ˜︁U∗ are both mean zero, even
under an incorrect specification of p∗(T | C). For the last term, we have:

E
[︃
Eq
[︂
E
[︁ ˜︁U(β)

⃓⃓
T,C

]︁ ⃓⃓⃓
C
]︂]︃

= E
[︃
Eq
[︂ ∫︂ ˜︁U(β)× p(Y | T,C) dµY

⃓⃓⃓
C
]︂]︃

= E
[︃ ∫︂ (︂ ∫︂ ˜︁U(β)× p(Y | T,C) dµY

)︂
× p∗(A) dµA

]︃
=
∫︂ (︃∫︂ ∫︂ ˜︁U(β)× p(Y | T,C)× p∗(T ) dµY dµT

)︃
× p(C) dµC

=
∫︂ ˜︁U(β)× p(Y | T,C)× p∗(T )× p(C) dµY,T,C

=
∫︂ ˜︁U(β)× q(Y, T, C) dµY,T,C

= Eq
[︁ ˜︁U(β)

]︁
.

We conclude the proof by noting that E
[︂ ˜︁U(β)

]︂
is mean zero if either ℓ(g(T ; β)) or

ν(g(T ; β)) is correctly specified. Note that the normalized version of ˜︁U(β∗), that is

E[∂˜︁U(β∗)
∂β

]−1 × ˜︁U(β∗), is an influence function that lives in the orthogonal complement

of the tangent space ˜︁Λ⊥
η . Therefore, the estimator obtained by solving E[ ˜︁U(β∗)] = 0 is

RAL and is consistent and asymptotically normal with mean zero and variance equal

to the variance of the influence function [van der Vaart, 2000, Tsiatis, 2007].

Theorem 3 Let ϕ0 denote the influence function of the estimator β obtained from

the estimating equation E[ ˜︁U(β∗, η0)] = 0. If n 1
4 +ϵ(ˆ︁η − η0) is bounded in probabil-

ity for some ϵ > 0, then the influence function corresponding to the estimator ˆ︁β
obtained from the estimating equation E[ ˜︁U(β∗, ˆ︁η)] = 0 is the same as ϕ0. In other

words, ˆ︁β follows the same asymptotic properties as if we knew the true nuisance models.
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Proof. Let β ∈ Rq and let η be infinite dimensional. We prove this theorem for the
parametric submodel in the semiparametric model of {p(Z; β, η)}. With a slight abuse
of notation, we denote η ∈ Rr to be the nuisance parameters within the parametric
submodel. The Taylor series expansion of ˜︁U(Z; ˆ︁β(ˆ︁η), ˆ︁η) around β0 is

0 = 1√
n

n∑︂
i=1

˜︁U(zi; ˆ︁β(ˆ︁η), ˆ︁η) (IV.1)

= 1√
n

n∑︂
i=1

˜︁U(zi;β0, ˆ︁η)⏞ ⏟⏟ ⏞
(a)

+ ∂

∂β

{︄
1
n

n∑︂
i=1

˜︁U(zi;β0, ˆ︁η)
}︄

⏞ ⏟⏟ ⏞
(b)

√
n(ˆ︁β − β0) + op(1)

(a) = 1√
n

n∑︂
i=1

˜︁U(zi;β0, η0)

+ 1
n

n∑︂
i=1

(︄
∂ ˜︁U(zi;β0, η0)

∂η

)︄
q×r
×
√
n(ˆ︁η − η0)

+ 1
2n

1/4(ˆ︁η − η0)′⏞ ⏟⏟ ⏞
1×1×r

(︄
1
n

n∑︂
i=1

∂2 ˜︁U(zi;β0, η0)
∂2η

)︄
⏞ ⏟⏟ ⏞

r×q×r (tensor)

n1/4(ˆ︁η − η0)⏞ ⏟⏟ ⏞
r×1×1

+ op(1)

(b) = 1
n

n∑︂
i=1

(︄
∂ ˜︁U(zi;β0, η0)

∂β

)︄
q×q⏞ ⏟⏟ ⏞

(b1)

+ ∂

∂β

{︃ 1
n

n∑︂
i=1

(︄
∂ ˜︁U(zi;β0, η0)

∂η

)︄
q×r⏞ ⏟⏟ ⏞

(b2)

× (ˆ︁η − η0)r×1

}︃

(b1) : 1
n

n∑︂
i=1

(︄
∂ ˜︁U
∂β

)︄
q×q
−→ Eθ0

[︄
∂ ˜︁U
∂β

]︄
q×q

= −Eθ0

[︂ ˜︁U(Z; θ0)S′
β(Z; θ0)

]︂

(b2) : 1
n

n∑︂
i=1

(︄
∂ ˜︁U
∂η

)︄
q×r
−→ Eθ0

[︄
∂ ˜︁U
∂η

]︄
q×r

= −Eθ0

[︂ ˜︁U(Z; θ0)S′
η(Z; θ0)

]︂
= 0q×r

Since n1/4(ˆ︁η− η0) and 1
n

∑︁n
i=1

(︃
∂˜︁U(zi;β0,η0)

∂η

)︃
q×r

both converge in probability to zero,

then

1√
n

n∑︂
i=1

˜︁U(zi; β0, ˆ︁η) = 1√
n

n∑︂
i=1

˜︁U(zi; β0, η0) + op(1).

Therefore, from equation IV.1
√
n(ˆ︁β − β0) = 1√

n

n∑︂
i=1

{︄
−E−1

θ0

[︄
∂ ˜︁U(zi;β0, η0)

∂β

]︄ ˜︁U(zi;β0, η0)
}︄

+ op(1)

Which concludes the proof. This procedure carries over to the case where the nuisance

parameter is infinite dimensional [Tsiatis, 2007].
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Lemma 6 Let Udim(ψ) = Y − ˜︁f(T,C, β;ψ), and fix any d(T,C). If either E[d(T,C) |
g(T ; β)] or E[Udim(ψ) | g(T ; β)] are correctly specified, the following estimating equa-
tions yield a consistent estimator of ψ,

E
[︂{︁
d(T,C)− E[d(T,C) | g(T ;β)]

}︁
×
{︁
Udim(ψ)− E[Udim(ψ) | g(T ;β)]

}︁]︂
= 0.

Proof. Define Udim(ψ) = Y − ˜︁f(T,C, β;ψ). Therefore,

E[Udim(ψ) | T,C] = ℓ(g(T ; β)) = E[Udim(ψ) | g(T ; β)].

This is a situation precisely isomorphic to single treatment SNMMs above, except with

the roles of A and C reversed (hence this is an “inverted SNMM”). Our conclusion will

then follow by results in [Robins, 2000, Vansteelandt and Joffe, 2014]. We provide a

more detailed proof as follows. We have that ˜︁f(t, C, β;ψ) = E[Y | T = t, C]−ℓ(g(t; β)).

Therefore,

E[Y | T = t, C = C] = ℓ(g(t; β)) + ˜︁f(t, C, β;ψ),

which we can rewrite as follows,

Y = ℓ(g(t; β)) + ˜︁f(t, C, β;ψ) + ϵ, s.t. E[ϵ | C, t] = 0.

Observed data are instances of the form Z = (C, T, Y ). The goal is to find

semiparametric estimators for ψ in the semiparametric model P = {p(z;ψ, ψ()), z =

(c, t, y)} and the truth is p0(z) = p(z;ψ0, η0()). The observed data likelihood can be

written as follows,

p(C, t, Y ) = p(C, t)× p(Y | t, C) ≡ p(C, t)× p(ϵ | t, C) = η1(C, t)× η2(ϵ, t, C)

= η1(C, t)× η2

(︃
Y − ℓ(g(t; β))− ˜︁f(t, C, β;ψ), t, C

)︃
,
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where ϵ = Y − ℓ(g(t; β))− ˜︁f(t, C, β;ψ), η1(C, t) denotes the nuisance model for p(C, t),

and η2(ϵ, t, C) denotes the nuisance model for p(ϵ | t, C), which is any density such

that E[ϵ | t, C] = 0. ψ is the parameter of interest and the nuisance parameters are

{η1, η2, ℓ(g(t; β))}.

The nuisance tangent space of this semiparametric model, Λ, is defined as the mean-

square closure of parametric submodel nuisance tangent spaces:

Pψ,ζ =
{︂
p(z;ψ, ψζ) = p(c, t; ζ1)× p(ϵ | t, c; ζ2)

}︂
=
{︃
p(c, t; ζ1)× p

(︂
y − ℓ(g(t; β))− ˜︁f(t, c, β;ψ) | t, c; ζ2

)︂}︃
,

where ζ1, ζ2 are r1, r2 dimensional vectors. Thus nuisance parameters in parametric

submode are finite dimensional, ζ = {ζ1, ζ2, ℓ(g(t; β))}.

Λζ = {B × Sζ , ∀B},

Sζ = ∂{log likelihood of the submodel evaluated at truth}
∂ζ

=

⎧⎨⎩
(︃
∂ log p(z;ψ, ζ)

∂ζ1

)︃
,
(︃
∂ log p(z;ψ, ζ)

∂ζ2

)︃
,
(︃
∂ log p(z;ψ, ζ)
∂ℓ(g(t; β))

)︃⎫⎬⎭
⃓⃓⃓⃓
⃓⃓
ψ0,ζ0

=
{︃
Sζ1(z;ψ0, ζ0), Sζ2(z;ψ0, ζ0), Sℓ(g(t;β))(z;ψ0, ζ0)

}︃
.

Hence, Λζ = Λζ1 +Λζ2 +Λℓ(g(t;β)). Sζ1 should satisfy the density conditions. In addition,

Sζ2 should satisfy the condition that E[ϵ | t, C] = 0. We derive each of these subspaces

using theorems in [Tsiatis, 2007] as a guideline.

(Theorem 4.6) Λζ1 = {f(C, t);E[f ] = 0}

(Theorem 4.7) Λζ2 = {f(ϵ, t, C);E[f | t, C] = 0,E[ϵf | t, C] = 0}

(Lemma 4.3) Λ⊥
ζ1 = {g(ϵ, t, C);E[g | t, C] = 0}

(Theorem 4.8) (Λζ1 + Λζ2)⊥ = {g(C, t)ϵ}

(Equation IV.2) Λℓ(g(t;β)) = {ψ
′
2ϵ(ϵ, C, t)
ψ2(ϵ, C, t)

f(g(t; β))}
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In order to derive Λℓ(g(t;β)), we write down the corresponding score function as follows.

Sℓ(g(t;β)) = ∂ log p(z;ψ, ζ)
∂ℓ(g(t; β))

⃓⃓⃓⃓
ψ0,ζ0

=
∂ log

(︃
ψ1(C, t; ζ10)× ψ2

(︂
y − ℓ(g(t; β))− γ(C, t;ψ), C, t; ζ20

)︂)︃
∂ℓ(g(t; β))

=
∂ logψ2

(︂
y − ℓ(g(t; β))− γ(C, t;ψ), l, t; ζ20

)︂
∂ℓ(g(t; β))

=
∂ logψ2

(︂
ϵ, C, t; ζ20

)︂
∂ϵ

× ∂ϵ

∂ℓ(g(t; β)) (ϵ is a function of ℓ(g(t; β)))

= ψ′
2ϵ(ϵ, C, t)
ψ2(ϵ, C, t)

f(g(t; β)). (IV.2)

In order to derive Λ⊥
ζ , we proceed as follows. Since Λζ = Λζ1 + Λζ2 + Λℓ(g(t;β)) and

Λζ1 + Λζ2 ⊂ Λζ , then Λ⊥
ζ ⊂ (Λζ1 + Λζ2)⊥ = {g(c, t)ϵ}. Similarly, Λ⊥

ζ ⊂ Λ⊥
ℓ(g(t;β)),

therefore Λ⊥
ζ = {(Λζ1 + Λζ2)⊥ ∩ Λ⊥

ℓ(g(t;β))}.

Pick an arbitrary element in (Λζ1 + Λζ2)⊥, and denote it by d(C, t)ϵ. For d(C, t)ϵ to

be an element in Λ⊥
ζ , it needs to be orthogonal to every element in Λℓ(g(t;β)). Pick an

arbitrary element in Λℓ(g(t;β)) and denote it by ψ′
2ϵ
ψ2
h(g(t; β)). We have,

∀h(g(t; β)) 0 =< d(C, t)ϵ, ψ
′
2ϵ
ψ2

h(g(t; β)) >

= E
[︂
d(C, t)ϵψ

′
2ϵ
ψ2

h(g(t; β))
]︂

= E
[︂
d(C, t)h(g(t; β))

]︂
.

Consequently, ∀h(g(t; β)):

0 = E
[︂
d(C, t)× h(g(t; β))

]︂
= E

[︃
E
[︂
d(C, t)× h(g(t; β))

⃓⃓⃓
g(t; β)

]︂]︃
= E

[︃
h(g(t; β))× E

[︂
d(C, t)

⃓⃓⃓
g(t; β)

]︂]︃
= E

[︂
h(g(t; β))

]︂
× E

[︂
d(C, t)

⃓⃓⃓
g(t; β)

]︂
.
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Therefore, E[ d(C, t) | g(t; β) ] = 0 and

Λ⊥
ζ =

{︃(︂
d(C, t)− E[d(C, t) | g(t; β)]

)︂
× ϵ

}︃
=
{︃(︂
d(C, t)− E[d(C, t) | g(t; β)]

)︂
×
(︂
Y − γ(C, t;ψ)− ℓ(g(t; β))

}︃
=
{︃(︂
d(C, t)− E[d(C, t) | g(t; β)]

)︂
×
(︂
U(ψ)− E[U(ψ) | C, t]

)︂}︃
.

Note that E[U(ψ) | C, t] = Eq[Y | g(t; β)] = E[U(ψ) | g(t; β)]. Hence,

Λ⊥
ζ =

{︃{︂
d(C, t)− E[d(C, t) | g(t; β)]

}︂
×
{︂
U(ψ)− E[U(ψ) | g(t; β)]

}︂}︃
.
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Appendix V

Supplementary Materials for
Algorithmic Fairness

A. G-estimation

G-estimation applies to structural nested models, which directly model the counter-

factual deviations in outcome from a reference treatment value (which we take to

be A = 0) conditional on history, assuming all future decisions are already optimal.

Specifically, for each decision point k we posit a structural nested mean model (SNMM)

parameterized by ψ as follows:

γk(Hk, ak;ψ) = E[Y (āk−1, ak, f
∗
Ak+1

)− Y (āk−1, ak = 0, f ∗
Ak+1

) | Hk],

where Ak+1 represents all treatments administered from time k+ 1 onwards. In words,

γk is the contrast of the counterfactual mean (conditional on observed history Hk)

where the past decisions are set to their observed values, the present decision is either

ak or a reference decision ak = 0, and all future decisions are made optimally, f ∗
Ak+1

.

If the true γk(Hk, ak;ψ) were known, the optimal treatment policies are those that

maximize this “blip” function at each stage: f ∗
Ak

= arg maxak γk(Hk, ak;ψ). In order

to estimate ψ using data, let

U(ψ, ζ(ψ), α) =
K∑︂
k=1
{Gk(ψ)− E [Gk(ψ) | Hk; ζ]} × {dk(Hk, Ak)− E [dk(Hk, Ak) | Hk;α]} ,

(V.1)
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where dk(Hk, Ak) is any function of Hk and Ak and Gk(ψ) is defined as

Y − γk(Hk, ak;ψ) +
K∑︂

i=k+1
[γi(Hi, a

∗
i ;ψ)− γi(Hi, ai;ψ)] ,

(a∗
i is the optimal decision at ith stage). Consistent estimators of ψ can be obtained

solving the estimating equations E[U(ψ, ζ(ψ), α)] = 0, as shown in [Robins, 2004].

Both of the modifications discussed for Q-learning and value search must be

applied when learning fair optimal policies by g-estimation. Specifically, we determine

optimal polities not from the SNMM contrast γk(Hk, ak;ψ) = E[Y (āk−1, ak, f
∗
Ak+1

)−

Y (āk−1, ak = 0, f ∗
Ak+1

) | Hk] itself, but rather from a modified contrast

γ∗
k(Hk \M,ak;ψ) =

∑︂
m,s

γk(Hk, ak;ψ)p∗(M |S,X)p∗(S|X)

= E[Y (āk−1, ak, f
∗
Ak+1

)− Y (āk−1, ak = 0, f ∗
Ak+1

) | Hk \ {M,S}]

which does not use M and S. This is analogous to removing M and S from the

Q-functions defined in Section 4 and is done for the same reason: M,S are drawn

from p(Z), not p∗(Z).

Second, the estimating equations for ψ must use constrained models (in particular

for M and S), and must be empirically solved using observations only from p∗(Z). As

was done with value search, we solve equation (V.1) empirically using a dataset where

each row xn, sn,mn is replaced by I rows of the form xn, s
∗
ni,m

∗
ni, i = 1, . . . , I, with

s∗
ni and m∗

ni drawn from p∗(S|xn;αs) and p∗(M |xn, S;αm), respectively.

B. Details and Additional Results

Simulations
Here we report the precise parameter settings used in our simulation studies. The
following regression models were used in our simulation study of the two-stage decision
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problem:

X1 ∼ |N (0, 1)|
(X2, X3) ∼ N (0, diag(2))

S ∼ Bernoulli(p = 0.5)
logit(p(M = 1)) ∼ −1 +X1 +X2 +X3 + S + 3SX1 + SX2 + SX3

logit(p(A1 = 1)) ∼ 1−X1 +X2 + S +M − SX1 + SX2 +MS − 3MX1 + 0.5MX2

logit(p(Y1 = 1)) ∼ −2 +X1 +X2 + S +M +A+ SX2 +MS +AS +AM

logit(p(A2 = 1)) ∼ 1−X1 +X2 +M +A+W + S(1−X1 +X2 +M −A)
− 3MX1 + 0.5MX2 −AX1 −AX2

Y = 2.5 +X1 +X2 +M +W +B + S(1 +X1 +X2 +M +A+W )
+A(1 +M − 2W ) +MW +B(−X1 + 2X2 −M) +WX1 +N (0, 1)

For this two-stage setting we estimated the optimal policies using Q-learning and

value search. In value search, we considered restricted class of polices of the form

p(A1 = 1|X,S,M) = −1 + αxX + αsS + αmM + αsxSX + αsmSM + αmxMX, and

p(A2 = 1|X,S,M,A1, Y1) = −1+αxX+αsS+αmM+αaA+αy1Y1+αsxSX+αsmSM+

αmxMX + αasAS + αaxAX where all αs range from −3 to 3 by 0.5 increments and

estimated the value of policies for each combination of αs using equation (3.9).

A third method for estimating policies is to directly model the counterfactual

contrasts known as optimal blip-to-zero functions and then learn these functions by

g-estimation [Robins, 2004]; see Appendix A. We implemented our modified fair

g-estimation for a single-stage decision problem and compared the results with Q-

learning and value search. The results are provided in Table 1. The data generating

process for the single-stage decision problem matches the causal model shown in

Fig. 3-3(a) where X,S,M, and A were generated the same way as described above.

The outcome Y was generated from a standard normal distribution with mean −2 +

X + S + M + A− 3SX2 + MS + AS + AM + AX2 + AX3. We used estimators in

Theorem 5 to compute PSEsy and PSEsa which require using M and S models. In

this synthetic data, the PSEsy was 1.618 (on the mean scale) and was restricted to

lie between −0.1 and 0.1. The PSEsa was 0.685 (on the odds ratio scale) and was

restricted to lie between 0.95 and 1.05.
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Table V-I: Comparison of population outcomes E[Y ] under policies learned by different
methods. The value under the observed policy was 0.24±0.006.

Unfair Policy Fair Policy
Q-learning 1.414±0.0056 1.189±0.0059

value search 1.134±0.0245 1.056±0.0299
g-estimation 1.375±0.0099 1.312±0.0102

The COMPAS Dataset

The regression models we used in the COMPAS data analysis were specified as follows:

logit(p(M = 1)) ∼ X1 +X2 + S + SX1 + SX2

logit(p(A = 1)) ∼ X1 +X2 + S +M +MS + (M + S)(X1 +X2)

Y ∼ X1 +X2 + S +M + A+ AS + AM +MS + (S +M + A)(X1 +X2)

For estimating the PSEs which we constrain, we used the same IPW estimators

described in the main chapter and reproduced in the theorem below. We constrained

the PSEs to lie between −0.05 and 0.05 and 0.95 and 1.05, respectively.

In Fig. V-1, we compare the overall incarceration rates recommended by the

optimal fair and unconstrained policies on the COMPAS data, as a function of the

utility parameter θ. For low values of θ the incarceration rate is zero, and becomes

higher as θ increases, but differentially for the fair and unconstrained optimal policies.

The difference between the policies depends crucially on the utility function. For some

values of the utility parameter, the unfair and fair policies coincide, but for other

values we would expect significantly different overall incarceration rates as well as

different disparities between racial groups (see result in the main chapter).

In Fig. V-2, we show the relative utility achieved by the optimal fair and uncon-

strained policies, as well as the utility of the observed decision pattern, as a function of

θ. As expected, choosing an optimal policy improves on the observed policy, with the

unfair (unconstrained) choice being higher utility than the fair (constrained) choice;
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Figure V-1: Overall incarceration rates for the COMPAS data as a function of the
utility parameter θ.

we sacrifice some optimality to satisfy the fairness constraints. However, the difference

depends on the utility parameter and for a range of parameter values the fair and

unfair policies are nearly the same in terms of optimality (even when they may disagree

on the resulting incarceration rate, around θ = 2.6). The fair and unfair policies

drift far apart in terms of utility around θ = 3, when the policies recommend an

incarceration rate comparable to or higher than the observed rate.

C. Multiple Sets of Mediators

In the main chapter, we discussed a K-stage decision problem with one set of per-

missible mediators, M . Here, we extend those results to the setting where we

have multiple sets of mediators M1, . . . ,MK , i.e., a DAG with topological order-

ing X,S,M1, A1, Y1, . . . ,MK , AK , YK . In this case, we consider the following paths

impermissible: PSEsy, representing the effect of S on Y along all paths other than

the paths of the form S →Mk → . . .→ Y (∀k); and PSEsak , representing the effect

of S on Ak along all paths other than the paths of the form S → Mj → . . . → Ak
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Figure V-2: The relative utility of policies for the COMPAS data as a function of the
utility parameter θ.

(∀j ≤ k). That is, we consider only pathways connecting S and Ak or Y through the

allowed mediators M1, . . . ,MK to be fair. In this case, the PSEs are identified by a

modification of the previous formula given in Section 3.2.2.
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PSEsy = E[Y (s,M1(s′), . . . ,MK(s′))]− E[Y (s′)]

=
∑︂

x,mK ,aK−1,yK−1,

{E[Y |s,MK , AK−1, Y K−1, X]

− E[Y |s′,MK , AK−1, Y K−1, X]}
K∏︂
k=1

p(Mk|s′, Ak−1, Y k−1, X)

×
K−1∏︂
k=1

p(Ak|s,Mk, Ak−1, Y k, X)p(Yk|s,Mk, Ak, Y k−1, X)p(X),

PSEsak = E[Ak(s,M1(s′), . . . ,MK(s′))]− E[Ak(s′)]

=
∑︂

x,mk,ak−1,yk−1,

{E[Ak|s,Mk, Ak−1, Y k−1, X]

− E[Ak|s′,Mk, Ak−1, Y k−1, X]}
K∏︂
k=1

p(Mk|s′, Ak−1, Y k−1, X)

×
k−1∏︂
j=1

p(Aj|s,M j, Aj−1, Y j, X)p(Yj|s,M j, Aj, Y j−1, X)p(X).

With these definitions, we can replace the estimators in Theorem 1 with:

ˆ︁gsy(Z) = 1
N

N∑︂
n=1

{︂I(Sn = s)
p(Sn|Xn)

K∏︂
k=1

p(Mk,n|s′, Ak−1,n, Y k−1,n, Xn)
p(Mk,n|s,Ak−1,n, Y k−1,n, Xn)

− I(Sn = s′)
p(Sn|Xn)

}︂
Yn

ˆ︁gsak(Z) = 1
N

N∑︂
n=1

{︂I(Sn = s)
p(Sn|Xn)

K∏︂
k=1

p(Mk,n|s′, Ak−1,n, Y k−1,n, Xn)
p(Mk,n|s,Ak−1,n, Y k−1,n, Xn)

− I(Sn = s′)
p(Sn|Xn)

}︂
Akn

Then, in Theorem 2 we analogously define p̃(Z) as follows:

p̃(Z) ≡ p(X)p∗(S|X;αs)
K∏︂
k=1

{︂
p∗(Mk|S,Ak−1, Y k−1, X;αm)× p(Ak|Hk)p(Yk|Ak, Hk)

}︂
.

In this case we constrain the S and Mk models ∀k, the rest of the procedure remaining

the same. Aside from the form of the identifying functional, the proofs of modified

versions of the theorems are analogous.
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D. Proofs

Theorem 4 Assume the observed data distribution p(Z) is induced by a causal model

where Z = {Y,C, S,M} includes baseline measures C, binary sensitive feature S, and

a set of mediators M, between S and Y. Let p(Y (π, s, s′)) denote the potential outcome

distribution that corresponds to the effect of S on Y along unfair causal paths in π,

where π includes the direct edge S → Y, and let p(Y0(π, s, s′)) denote the identifying

functional for p(Y (π, s, s′)) obtained from the edge g-formula, where the term p(Y | Z)

is evaluated at {Z \ S} = 0. Then E[Y | Z] can be written as follows:

E[Y | Z] = f(Z)−
(︂
E[Y (π, s, s′)]− E[Y0(π, s, s′)]

)︂
+ ϕ(S),

where f(Z) := E[Y | Z]− E[Y | S, {Z \ S} = 0] and ϕ(S) = w0 + wsS. Furthermore,

ws corresponds to π-specific effect of S on Y.

Proof. By letting ϕ(A = a) = E[Y (π, a, a′)], it suffices to show that E[Y0(π, a, a′)] =

E[Y |A, {Z \A} = 0]. Given the identification result for edge-consistent counterfactuals

in [Shpitser and Tchetgen Tchetgen, 2016], we can write the identification functional

as follows.

E[Y0(π, a, a′)] =
∑︂

V ∈XV \{A,Y }
E[Y |A = a, {Z \ A} = 0]× h(V ∈ XV \ Y ),

where h(V ∈ XV \ Y ) is a function of all variables excluding Y . Note that h, does not

include any density where A appears on the LHS of the conditioning bar. Therefore,

we have:

E[Y0(π, s, s′)] = E[Y | S = s, {Z \ S} = 0]×
∑︂

V ∈XV \{S,Y }
h(V ∈ XV \ Y )

= E[Y | S = s, {Z \ S} = 0].

148



Theorem 5 Assume S is binary. Under the causal model above, the followings are

consistent estimators of PSEsy and PSEsak , assuming all models are correctly specified:

ˆ︁gsy(Z) = 1
N

N∑︂
n=1

{︃I(Sn = s)
p(Sn|Xn) ×

p(Mn|s′, Xn)
p(Mn|s,Xn) −

I(Sn = s′)
p(Sn|Xn)

}︃
× Yn,

ˆ︁gsak(Z) = 1
N

N∑︂
n=1

{︃I(Sn = s)
p(Sn|Xn) ×

p(Mn|s′, Xn)
p(Mn|s,Xn) −

I(Sn = s′)
p(Sn|Xn)

}︃
× Akn.

Proof. The latent projection [Verma and Pearl, 1990b] of any K stage DAG onto

X,S,M,A, Y suffices to identify and estimate the two path-specific effects in question,

and this latent projection is the complete DAG with topological ordering X,S,M,A, Y .

The consistency of the estimators above then follows directly from derivations in

[Tchetgen Tchetgen and Shpitser, 2012]. As an example, we have the following

derivation for the first term of gsy(Z):

∑︂
X,M

E [Y | s,M,X]× p(M | S = s′, X)× p(X)

=
∑︂

X,M,A,Y

Y × p(Y | S = s,M,A,X)× p(A | S = s,M,X)× p(M | S = s′, X)× p(X)

=
∑︂

X,S,M,A,Y

I(S = s)
p(S | X) ×

p(M | S = s′, X)
p(M | S = s,X) × Y × p(Y, S,M,A,X)

= E
[︄
I(S = s)
p(S | X) ×

p(M | S = s′, X)
p(M | S = s,X) Y

]︄
,
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which is precisely the identifying functional for the first term of the PSE we are

interested in. That the above estimator is consistent for this functional is a standard

result.

Theorem 6 Consider the K-stage decision problem described by the DAG in Fig. 3-

3(c). Let p∗(M | S, ,X;αm) and p∗(S | X;αs) be the constrained models chosen

to satisfy PSEsy = 0 and PSEsak = 0. Let ˜︁p(Z) be the joint distribution induced

by p∗(M | S,X;αm) and p∗(S | X;αs), and where all other distributions in the

factorization are unrestricted. That is,

˜︁p(Z) ≡ p(X)× p∗(S | X;αs)× p∗(M | S,X;αm)×
K∏︂
k=1

p(Ak | Hk)× p(Yk | Ak, Hk).

Then the functionals PSEsy and PSEsai taken w.r.t. ˜︁p(Z) are also zero.

Proof. Let Y ≡ YK . Because M preceeds all Ak, Yk for k = 1, . . . K, it suffices to

consider the latent projection with only variables X,S,M,A, Y without affecting

identifiability considerations. Then we have the following:

˜︃PSE
sy

= ˜︁E[ Y (s,M(s′)) ]− ˜︁E[ Y (s′) ]
=
∑︂
X,M

{˜︁E[Y | s,M,X]− ˜︁E[Y | s′,M,X]} × p∗(M | s′, X;αm)× p(X)

=
∑︂
X,M

{E[Y | s,M,X]− E[Y | s′,M,X]} × p∗(M | s′, X;αm)× p(X)

=
∑︂

X,M,Y

Y × {p(Y | s,M,X)− p(Y | s′,M,X)} × p∗(M | s′, X;αm)× p(X)

=
∑︂

X,S,M,Y

Y ×
{︂ I(S = s)
p∗(S | X;αs)

× p∗(M | s′, X;αm)
p∗(M | s,X;αm) −

I(S = s′)
p∗(S | X;αs)

}︂
× p(Y |M,S,X)× p∗(M | S,X;αm)× p∗(S | X;αs)× p(X)

= 0,

by choice of p∗(M | S,X;αm) and p∗(S | X;αs). The proof is structurally the same

for ˜︃PSEsak
.

150



Appendix VI

Supplementary Materials for
Missing Data

A. Parameterization of Missing Data ADMGs

We summarize the necessary concepts required in order to explain our proof of

completeness for identification of the full law in missing data acyclic directed mixed

graphs (ADMGs). These concepts draw on the binary parameterization of nested

Markov models of an ADMG, described in Appendix I. It is shown in [Evans, 2018] that

the nested Markov model [Richardson et al., 2017] of an ADMG G(V ) is a smooth super

model with fixed dimension, of the underlying latent variable model, that captures all

equality constraints and avoids non-regular asymptotics arising from singularities in

the parameter space [Drton, 2009, Evans, 2018]. We use this fact in order to justify

the use of nested Markov models of a missing data ADMG in order to describe full

laws that are Markov relative to a missing data DAG with hidden variables. That is,

the nested Markov model of a missing data ADMG G(V ), where V = {O,X(1), R,X},

is a smooth super model of the missing data DAG model G(V ∪ U). We also utilize

nested Markov models of an ADMG G(V \X(1)), corresponding to projection of the

missing data ADMG G(V ) onto variables that are fully observable. While such a

model does not capture all equality constraints in the true observed law, it is still a

smooth super model of it, thus providing an upper bound on the model dimension of
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the observed law.

We use the Moebius parameterization [Evans and Richardson, 2014] in order to

count the number of parameters required to parameterize the full law of a missing

data ADMG and its corresponding observed law. We then use this to reason that

if the number of parameters in the full law exceeds those in the observed law, it is

impossible to establish a map from the observed law to the full law. This in turn

implies that such a full law is not identified.

The binary parameterization of the full law of a missing data ADMG G(X(1), O,R,X)

is exactly the same as that of an ordinary ADMG, except that the deterministic factors

p(Xi | Ri, X
(1)
i ), can be ignored, as Xi = X

(1)
i with probability one when Ri = 1, and

Xi =? with probability one when Ri = 0.

The observed law is parameterized as follows. First, variables in X(1) are treated

as completely unobserved, and an observed law ADMG G(X,O,R) is obtained by

applying the latent projection operator to G(X(1), O,R,X). The Moebius parameters

are then derived in a similar manner as before, with the additional constraint that

if Xi ∈ X appears in the head of a Moebius parameter, and the corresponding

missingness indicator Ri appears in the tail, then the kernel must be restricted to

cases where Ri = 1. This is because when Ri = 0, the probability of the head taking

on any value, aside from those where Xi =?, is deterministically defined to be 0.

Note that parameterizing the observed law by treating variables in X(1) as fully

unobserved does not quite capture all equality constraints that may be detectable

in the observed law, as these variables are, in fact, sometimes observable when their

corresponding missingness indicators are set to one. Indeed, a smooth parameterization

of the observed law of missing data models that captures all constraints implied by

the model, is still an open problem. Nevertheless, parameterizing an observed law

ADMG, such as the one mentioned earlier, provides an upper bound on the number

of parameters required to parameterize the true observed law. This suffices for our
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Figure VI-1: (a) The missing data DAG model used in Scenario 2. (b) the missing
data ADMG model used in Scenario 3.

purposes, as demonstrating that the upper bound on the number of parameters in

the observed law is less than the number of parameters in the full law, is sufficient to

prove that the full law is not identified.

B. Example: Odds Ratio Parameterization

To build up a more concrete intuition for Theorems 7 and 9, we provide an example of

the odds ratio parameterization for the missing data models used in Scenarios 2 and 3

of the main chapter, reproduced here in Figs. VI-1(a, b). Utilizing the order R1, R2, R3

on the missingness indicators, the odds ratio parameterization of the missing data

process for both models is as follows.

1
Z
×
(︃ 3∏︂
k=1

p(Ri | R−i = 1, X(1))
)︃
×OR(R1, R2, | R3 = 1, X(1))×OR(R3, (R1, R2) | X(1)).

(VI.1)

We now argue that each piece in Eq. VI.1 is identified. Note that, in the missing

data DAG shown in Fig. VI-1(a), Ri ⊥⊥ X
(1)
i | R−i, X

(1)
−i by d-separation. The same

is true for the missing data ADMG in Fig. VI-1(b) by m-separation. Thus, in both

cases, the product over conditional pieces of each Ri given the remaining variables

is not a function X
(1)
i , and is thus a function of observed data. We now show that
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OR(R1, R2 | R3 = 1, X(1)) is not a function of X(1)
1 , X

(1)
2 by utilizing the symmetry

property of the odds ratio.

OR(R1, R2 | R3 = 1, X(1)) = p(R1 | R2, R3 = 1, X(1)
2 , X

(1)
3 )

p(R1 = 1 | R2, R3 = 1, X(1)
2 , X

(1)
3 )

× p(R1 = 1 | R2 = 1, R3 = 1, X(1)
2 , X

(1)
3 )

p(R1 | R2 = 1, R3 = 1, X(1)
2 , X

(1)
3 )

OR(R2, R1 | R3 = 1, X(1)) = p(R2 | R1, R3 = 1, X(1)
1 , X

(1)
3 )

p(R2 = 1 | R1, R3 = 1, X(1)
1 , X

(1)
3 )

× p(R2 = 1 | R1 = 1, R3 = 1, X(1)
1 , X

(1)
3 )

p(R2 | R1 = 1, R3 = 1, X(1)
1 , X

(1)
3 )

.

Thus, from the first equality, the odds ratio is not a function of X(1)
2 as R1 ⊥⊥ X

(1)
1 |

R−1, X
(1)
−1 by d-separation in Fig. VI-1(a) and by m-separation in Fig. VI-1(b). A

symmetric argument holds for X(1)
2 and R2 as seen in the second and third equalities.

Hence, the odds ratio is only a function of X(1)
3 , which is observable, as the function

is evaluated at R3 = 1.

We now utilize an identity from [Chen et al., 2015] in order to simplify the final

term in Eq. VI.1. That is,

OR(R3, (R1, R2) | X(1)) = OR(R3, R2 | R1 = 1, X(1)) OR(R3, R1 | R2, X
(1))

= OR(R3, R2 | R1 = 1, X(1))×OR(R3, R1 | R2 = 1, X(1))

× OR(R3, R1 | R2, X
(1))

OR(R3, R1 | R2 = 1, X(1))⏞ ⏟⏟ ⏞
f(R1,R2,R3|X(1))

.

The first two pairwise odds ratio terms are functions of observed data using an

analogous argument that draws on the symmetry property of the odds ratio and the

conditional independence Ri ⊥⊥ Xi | R−i, X
(1)
−i , as before. The final term f(R1, R2, R3 |

X(1)), is a three-way interaction term on the odds ratio scale and can be expressed in

three different ways as follows [Chen et al., 2015],

OR(R3, R1 | R2, X
(1))

OR(R3, R1 | R2 = 1, X(1)) = OR(R2, R3 | R1, X
(1))

OR(R2, R3 | R1 = 1, X(1)) = OR(R1, R2 | R3, X
(1))

OR(R1, R2 | R3 = 1, X(1)) .
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From the first equality, we note by symmetry of the odds ratio and conditional

independence that f is not a function of X(1)
1 , X

(1)
3 . Similarly, from the second

equality, we note that f is not a function of X(1)
2 , X

(1)
3 . Finally, from the third equality,

we note that f is not a function of X(1)
1 , X

(1)
2 . Therefore, f is not a function of

X
(1)
1 , X

(1)
2 , X

(1)
3 and is identified.

The normalizing function Z, is a function of all the pieces that we have already

shown to be identified, and is therefore also identified. Thus, the missing data

mechanisms p(R | X(1)), and consequently, the full laws corresponding to the missing

data graphs shown in Figs. VI-1(a,b) are identified by Remark 2.

C. Proofs

We first prove Lemmas 7 and 8 as we use them in the course of proving Theorems 7

and 9. We start with Lemma 8, as the proof for Lemma 7 simplifies to a special case.

Lemma 8 A missing data model of an ADMG G that contains no colluding paths is

a submodel of the itemwise conditionally independent nonresponse model described in

[Shpitser, 2016, Sadinle and Reiter, 2017].

Proof. The complete Markov blanket of a vertex Vi in an ADMG G, denoted mbcG(Vi)

is the set of vertices such that Vi ⊥⊥ V−i \mbcG(Vi) | mbcG(Vi) [Pearl, 2009, Richardson,

2003]. In ADMGs, this set corresponds to the Markov blanket of Vi, its children, and

the Markov blanket of its children. That is,

mbcG(Vi) ≡ mbG(Vi) ∪
(︄ ⋃︂
Vj∈chG(Vi)

Vj ∪mbG(Vj)
)︄
\ {Vi}.

Without loss of generality, we ignore the part of the graph involving the deter-

ministic factors p(X | X(1), R) and the corresponding deterministic edges, in the

construction of the Markov blanket and complete Markov blanket of variables in a
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missing data graph G(X(1), O,R). We now show that the absence of non-deterministic

colluder paths between a pair X(1)
i and Ri in G implies that X(1)

i /∈ mbcG(Ri).

• X
(1)
i is not a parent of Ri, as X(1)

i → Ri is trivially a colluder path.

• X
(1)
i is not in the district of Ri, as X(1)

i ↔ · · · ↔ Ri is also a colluder path.

These two points together imply that X(1)
i /∈ mbG(Ri). We now show that the

union over children of Ri and their Markov blankets also exclude X(1)
i .

• X
(1)
i is not a child of Ri, as directed edges from Ri to variables in X(1) are ruled

out by construction in missing data graphs.

• X
(1)
i is also not in the district of any children of Ri, as Ri → · · · ↔ X

(1)
i is a

colluding path.

• X
(1)
i is also not a parent of the district of any children of Ri, as Ri → · · · ← X

(1)
i

is a colluding path.

These three points together rule out the possibility that X(1)
i is present in the

union over children and Markov blankets of children of Ri. Thus, we have shown that

X
(1)
i ̸∈ mbcG(Ri). This implies the following,

Ri ⊥⊥ V \ {Ri,mbcG(Ri)} | mbcG(Ri) =⇒ Ri ⊥⊥ X
(1)
i | mbcG(Ri).

By semi-graphoid axioms (see for example, [Lauritzen, 1996, Pearl, 2009]) this

yields the conditional independence Ri ⊥⊥ X
(1)
i | R−i, X

(1)
−i , O.

The same line of reasoning detailed above can be used for all Ri ∈ R, which then

gives us the set of conditional independences implied by the no self-censoring model.

That is,

Ri ⊥⊥ X
(1)
i | R−i, X

(1)
−i , O, ∀Ri ∈ R.
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Lemma 7 A missing data model of a DAG G that contains no self-censoring edges

and no colluders, is a submodel of the itemwise conditionally independent nonresponse

model described in [Shpitser, 2016, Sadinle and Reiter, 2017].

Proof. A DAG is simply a special case of an ADMG with no bidirected edges. Conse-

quently the only two types of colluding paths, are self-censoring edges (X(1)
i → Ri)

and colluder structures (X(1)
i → Rj ← Ri). Thus, the absence of these two structures

in a missing data DAG G, rules out all possible colluding paths. The rest of the proof

then carries over straightforwardly from Lemma 8.

Theorem 7 A full law p(R,X(1), O) that is Markov relative to a missing data DAG

G is identified if G does not contain edges of the form X
(1)
i → Ri (no self-censoring)

and structures of the form X
(1)
j → Ri ← Rj (no colluders), and the stated positivity

assumption holds. Moreover, the resulting identifying functional for the missingness

mechanism p(R | X(1), O) is given by the odds ratio parameterization provided in

Eq. 4.2 of the main draft, and the identifying functionals for the target law and full

law are given by Remarks 1 and 2.

Proof. Given Eq. (4.2), we know that

p(R | X(1), O) = 1
Z
×

K∏︂
k=1

p(Rk | R−k = 1, X(1), O)×
K∏︂
k=2

OR(Rk, R≺k | R≻k = 1, X(1), O),

where R−k = R \Rk, R≺k = {R1, . . . , Rk−1}, R≻k = {Rk+1, . . . , RK}, and

OR(Rk, R≺k | R≻k = 1, X(1), O)

= p(Rk | R≻k = 1, R≺k, X
(1), O)

p(Rk = 1 | R≻k = 1, R≺k, X(1), O) ×
p(Rk = 1 | R−k = 1, X(1), O)
p(Rk | R−k = 1, X(1), O) ,

and Z is the normalizing term and is equal to ∑︁r{
∏︁K
k=1 p(rk | R−k = 1, X(1), O) ×∏︁K

k=2 OR(rk, r≺k | R≻k = 1, X(1), O)}. If we can prove that all the pieces in this
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factorization are identified, then the missingness process is identified and so is the

full law. We provide the proof in two steps. Our proof is similar to the identification

proof of the no self-censoring model given in [Malinsky et al., 2019].

For each k ∈ 3, . . . , K, we can apply the following expansion to the odds ratio term.

Without loss of generality we drop fully observed random variables O for brevity,

OR(Rk, R≺k | R≻k = 1, X(1)) = OR(Rk, Rk−1 | R−(k,k−1) = 1, X(1))
×OR(Rk, R≺k−2 | R≻k = 1, Rk−1, X

(1)). (VI.2)

This expansion can be applied inductively to the second term in the above product

until OR(Rk, R≺k | R≻k = 1, X(1)) is expressed as a function of pairwise odds ratios

and higher-order interaction terms. Applying the inductive expansion to each odds

ratio term in ∏︁K
k=2 OR(Rk, R≺k | R≻k = 1, X(1)) we can re-express the identifying

functional as,

p(R | X(1)) = 1
Z
×

K∏︂
k=1

p(Rk | R−k = 1, X(1))

×
∏︂

Rk,Rl∈R
OR(Rk, Rl | R−(k,l) = 1, X(1)) (VI.3)

×
∏︂

Rk,Rl,Rm∈R
f(Rk, Rl, Rm | R−(k,l,m) = 1, X(1))

×
∏︂

Rk,Rl,Rm,Rn∈R
f(Rk, Rl, Rm, Rn | R−(k,l,m,n) = 1, X(1))× · · · × f(R1, . . . , RK | X(1)),

(VI.4)

where Z is the normalizing constant as before, and each f(· | ·, X(1)) are 3-way, 4-way,
up to K-way interaction terms. These interaction terms are defined as follows.

f(Ri, Rj , Rk | R−(i,j,k) = 1, X(1)) =
OR(Ri, Rj |Rk, R−(i,j,k) = 1, X(1))

OR(Ri, Rj |Rk = 1, R−(i,j,k) = 1, X(1))
,

and

f(Ri, Rj , Rk, Rl|R−(i,j,k,l) = 1, X(1))

=
OR(Ri, Rj |Rk, Rl, R−(i,j,k,l) = 1, X(1))

OR(Ri, Rj |Rk = 1, Rl, R−(i,j,k,l) = 1, X(1))
×

OR(Ri, Rj |Rk = 1, Rl = 1, R−(i,j,k,l) = 1, X(1))
OR(Ri, Rj |Rk, Rl = 1, R−(i,j,k,l) = 1, X(1))

,
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and so on, up to

f(R1, ..., RK | X(1)) = OR(Ri, Rj |R−(i,j), X
(1))×

×

∏︂
Rk,Rl∈R

OR(Ri, Rj |R(k,l) = 1, R−(i,j,k,l), X
(1))

∏︂
Rk,Rl,Rm,Rn∈R

OR(Ri, Rj |R(k,l,m,n) = 1, R−(i,j,k,l,m,n), X
(1)) × · · ·∏︂

Rk∈R

OR(Ri, Rj |Rk = 1, R−(i,j,k), X
(1))

∏︂
Rk,Rl,Rm∈R

OR(Ri, Rj |R(k,l,m) = 1, R−(i,j,k,l,m), X
(1)) × · · ·

.

Readers familiar with the clique potential factorization of Markov random fields

may treat these interaction terms analogously [Malinsky et al., 2019]. We now show

that each term in the above factorization is identified.

Step 1.

We start off by looking at the conditional pieces p(Rk | R−k = 1, X(1), O). Given

Lemma. 7, we know that Rk ⊥⊥ X
(1)
k | R−k, X

(1)
−k , O. Therefore, p(Rk | R−k =

1, X(1), O) = p(Rk | R−k = 1, X(1)
−k , O),∀k, is identified for all Rk ∈ R.

Step 2.

We now show that for any Rk, Rl ∈ R, the pairwise odds ratio OR(Rk, Rl | R{−(k,l)} =

1, X(1)) given in Eq. (VI.4) is identified. We know that

OR(Rk, Rl | R−(k,l) = 1, X(1)) = OR(Rk, Rl | R−(k,l) = 1, X−(k,l), X
(1)
k , X

(1)
l ).

Consequently, if we can show that the odds ratio is neither a function of X(1)
k nor

X
(1)
l , then we can safely claim that the odds ratio is only a function of observed data

and hence is identified. We get to this conclusion by exploiting the symmetric notion

in odds ratios.

OR(Rk, Rl | R−(k,l) = 1, X(1)) =
p(Rk | Rl, R−(k,l) = 1, X(1))

p(Rk = 1 | Rl, R−(k,l) = 1, X(1))
×
p(Rk = 1 | R−k = 1, X(1))
p(Rk | R−k = 1, X(1))

=
p(Rl | Rk, R−(k,l) = 1, X(1))

p(Rl = 1 | Rk, R−(k,l) = 1, X(1))
×
p(Rl = 1 | R−l = 1, X(1))
p(Rl | R−l = 1, X(1))

In the first equality, we can see that the odds ratio is not a function of X(1)
k since

Rk ⊥⊥ X
(1)
k | R−k, X

(1)
−k . Similarly, from the second equality, we can see that the odds
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ratio is not a function of X(1)
l since Rl ⊥⊥ X

(1)
l | R−l, X

(1)
−l . Therefore, the pairwise

odds ratios are all identified.

Finally we show that each of the higher-order interaction terms are identified. For

each of these terms we need to show that they are not a function of missing variables

with indices corresponding to indicators to the left of the conditioning bar. That is, we

need to show that the 3-way interaction terms f(Rk, Rl, Rm | R−(k,l,m) = 1, X(1)) are

not functions of X(1)
(k,l,m), the 4-way interaction terms f(Rk, Rl, Rm, Rn | R−(k,l,m,n) =

1, X(1)) are not functions of X(1)
(k,l,m,n), and so on until finally the K-way interaction

term f(R1, . . . , RK | X(1)) is not a function of X(1).

Because of the way the odds ratio is defined, each f(· | ·, X(1)) is symmetric in the

k arguments appearing to the left of the conditioning bar and can be rewritten in

multiple equivalent ways. In particular, each k-way interaction term can be rewritten

in
(︂
k
2

)︂
ways for any choice of indices i, j of the missingness indicators that appear to

the left of the conditioning bar. Each such representation allows us to conclude that

f(· | ·, X(1)) is not a function of X(1)
i , X

(1)
j . Combining all these together allows us to

conclude that the k-way interaction term f(· | ·, X(1)) is not a function of the missing

variables corresponding to the indicators appearing on the left of the conditioning bar.

As a concrete example, consider the 3-way interaction f(R1, R2, R3 | R−(1,2,3) =

1, X(1)). We can write it down in three different ways as follows.

f(Ri, Rj , Rk | R−(1,2,3) = 1, X(1)) =
OR(R1, R2 | R−(1,2,3) = 1, R3, X

(1))
OR(R1, R2 | R−(1,2,3) = 1, R3 = 1, X(1))

=
OR(R1, R3 | R−(1,2,3) = 1, R2, X

(1))
OR(R1, R3 | R−(1,2,3) = 1, R2 = 1, X(1))

=
OR(R2, R3 | R−(1,2,3) = 1, R1, X

(1))
OR(R2, R3 | R−(1,2,3) = 1, R1 = 1, X(1))

From the first equality, we note that f is not a function of X(1)
1 , X

(1)
2 . From the second

equality, we note that f is not a function of X(1)
1 , X

(1)
3 . From the third equality, we note

that f is not a function of X(1)
2 , X

(1)
3 . Therefore, f is not a function of X(1)

1 , X
(1)
2 , X

(1)
3
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and is identified.

Theorem 8 The graphical condition of no self-censoring and no colluders, put forward

in Theorem 7, is sound and complete for the identification of full laws p(R,O,X(1))

that are Markov relative to a missing data DAG G.

Proof. Soundness is a direct consequence of Theorem 7. To prove completeness, it

needs to be shown that in the presence of a self-censoring edge, or a colluder structure,

the full law is no longer (non-parametrically) identified. A proof by counterexample

of both these facts was provided in [Bhattacharya et al., 2019b]. However, this can

also be seen from the fact that self-censoring edges and colluders are special cases

of the colluding paths that we prove results in non-identification of the full law in

Lemma 9.

Theorem 9 A full law p(R,X(1), O) that is Markov relative to a missing data ADMG

G is identified if G does not contain any colluding paths and the stated positivity

assumption in Section 4.3 holds. Moreover, the resulting identifying functional for

the missingness mechanism p(R | X(1), O) is given by the odds ratio parametrization

provided in Eq. 4.2 of the main draft.

Proof. The proof strategy is nearly identical to the one utilized in Theorem 7, except

the conditional independences Rk ⊥⊥ X
(1)
k | R−k, X

(1)
−k , O come from Lemma 8 instead

of Lemma 7.

Lemma 9 A full law p(R,X(1), O) that is Markov relative to a missing data ADMG G

containing a colluding path between any pair X(1)
i ∈ X(1) and Ri ∈ R, is not identified.
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Figure VI-2: (a, d, e) Examples of colluding paths in missing data models of ADMGs.
(b) A DAG with hidden variable U that is Markov equivalent to (a). (c) Projecting
out X(1)

1 from (a), (f) Projecting out X(1)
1 and X

(1)
2 from (d) and (e).

Proof. Proving the non-identifiability of missing data models of an ADMG G that

contains a colluding path can be shown by providing two models M1 and M2 that

disagree on the full law but agree on the observed law. Coming up with a single

example of such a pair of models is sufficient for arguing against non-parametric

identification of the full law. Therefore, for simplicity, we restrict our attention to

binary random variables. We first provide an example of such a pair of models on

the simplest form of a colluding path, a bidirected edge X
(1)
i ↔ Ri as shown in

Fig. VI-2(a). According to Table VI-I, in order for the observed laws to agree, the

only requirement is that the quantity ab+ (1−a)c remain equal in both models; hence

we can come up with infinitely many counterexamples of full laws that are not the

same but map to the same observed law.

Constructing explicit counterexamples are not necessary to prove non-identification

as long as it can be shown that there exist at least two distinct functions that map

two different full laws onto the exact same observed law. For instance, if the number

of parameters in the full law is strictly larger than the number of parameters in the

observed law, then there would exist infinitely many such functions. Consequently,

we rely on a parameter counting argument to prove the completeness of our results.

Since we are considering missing data models of ADMGs, we use the Moebius pa-
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rameterization of binary nested Markov models of an ADMG described in Appendix

A.

The nested Markov model of a missing data ADMG G(V ), where V = {O,X(1), R,X},

is a smooth super model of the missing data DAG model G(V ∪U), and has the same

model dimension as the latent variable model [Evans, 2018]. We also utilize nested

Markov models of an ADMG G(V \X(1)), corresponding to projection of the missing

data ADMG G(V ) onto variables that are fully observable. While such a model does

not capture all equality constraints in the true observed law, it is still a smooth super

model of it, thus providing an upper bound on the model dimension of the observed

law. This suffices for our purposes, as demonstrating that the upper bound on the

number of parameters in the observed law is less than the number of parameters in

the full law, is sufficient to prove that the full law is not identified. We first walk the

reader through a few examples to demonstrate this proof strategy, and then provide

the general argument.

Self-censoring through unmeasured confounding:

We start by reanalyzing the colluding path given in Fig. VI-2(a) and the corresponding

projection given in Fig. VI-2(c). The Moebius parameters associated with the full

law are q(X(1)
1 = 0), q(R1 = 0), q(X(1)

1 = 0, R1 = 1), for a total of 3 parameters. The

Moebius parameters associated with the observed law in Fig VI-2(c) are q(R1 =

0), q(X(1)
1 = 0 | R1 = 0), for a total of only 2 parameters. Since 2 < 3, we can

construct infinitely many mappings, as it was shown in Table VI-I.

Simple colluding paths:

Consider the colluding paths given in Fig. VI-2(d, e) and the corresponding projection

(which are identical in both cases) given in Fig. VI-2(f). The Moebius parameters

associated with the full laws and observed law are shown in Table VI-II. Once again,
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U p(U)
0 a
1 1− a

R1 U p(R1|U)
0 0 b
1 0 1− b
0 1 c
1 1 1− c

X
(1)
1 U p(X(1)

1 |U)
0 0 d
1 0 1− d
0 1 e
1 1 1− e

R1 X
(1)
1 U p(R1, X

(1)
1 , U)

0 0 0 a ∗ b ∗ d
0 0 1 (1− a) ∗ c ∗ e
0 1 0 a ∗ b ∗ (1− d)
0 1 1 (1− a) ∗ c ∗ (1− e)
1 0 0 a ∗ (1− b) ∗ d
1 0 1 (1− a) ∗ (1− c) ∗ e
1 1 0 a ∗ (1− b) ∗ (1− d)
1 1 1 (1− a) ∗ (1− c) ∗ (1− e)

R1 X
(1)
1 p(Full Law) X1 p(Observed Law)

0 0 a ∗ b ∗ d+ (1− a) ∗ c ∗ e ? a ∗ b+ (1− a) ∗ c1 a ∗ b ∗ (1− d) + (1− a) ∗ c ∗ (1− e)

1 0 a ∗ (1− b) ∗ d+ (1− a) ∗ (1− c) ∗ e 0
a ∗ (1− b) + (1− a) ∗ (1− c)1 a ∗ (1− b) ∗ (1− d) + (1− a) ∗ (1− c) ∗ (1− e) 1

Table VI-I: Construction of counterexamples for non-identifiablity of the full law in
Fig. VI-2(a) using the DAG with hidden variable U in Fig. VI-2(b) that is Markov
equivalent to (a).

since the number of parameters in the observed law is less than the number in the full

law (6 < 7), we can construct infinitely many mappings.

A general argument:

In order to generalize our argument, we first provide a more precise representation

(that does not use dashed edges) in Figs. VI-3(a-d), of all possible colluding paths

between X
(1)
i and Ri. Without loss of generality, assume that there are K variables

in X(1) and there are S variables that lie on the collider path between X
(1)
i and Ri,

S ∈ {0, 1, . . . , 2 ∗ (K − 1)}. We denote the sth variable on the collider path by Vs;

Vs ∈ {X(1) \X(1)
i , R\Ri}. Note that VS in Figs. VI-3(c, d) can only belong to {R\Ri}

by convention. Fig. VI-3(e) illustrates the corresponding projections of figures (a) and

(b), and Fig. VI-3(f) illustrates the corresponding projections of figures (c) and (d).

In the projections shown in Figs. VI-3(e, f), V ∗ ∈ {X \X(1)
i , R \Ri}.
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Moebius Parameterization of the Full Law in Fig. VI-2(d)

Districts Intrinsic Head/Tail Moebius Parameters Counts
{X(1)

1 } {X(1)
1 }, {} q(X(1)

1 = 0) 1
{R2} {R2}, {} q(R2 = 0) 1

{R1, X
(1)
2 }

{R1}, {} q(R1 = 0) 1
{X(1)

2 }, {X
(1)
1 } q(X(1)

2 = 0 | X(1)
1 ) 2

{R1, X
(1)
2 }, {X

(1)
1 } q(R1 = 0, X(1)

2 = 0 | X(1)
1 ) 2
Total 7

Moebius Parameterization of the Full Law in Fig. VI-2(e)

Districts Intrinsic Head/Tail Moebius Parameters Counts
{R2} {R2}, {} q(R2 = 0) 1

{R1, X
(1)
1 , X

(1)
2 }

{R1}, {} q(R1 = 0) 1
{X(1)

1 }, {} q(X(1)
1 = 0) 1

{X(1)
2 }, {} q(X(1)

2 = 0) 1
{R1, X

(1)
2 }, {} q(R1 = 0, X(1)

2 = 0) 1
{X(1)

1 , X
(1)
2 }, {} q(X(1)

1 = 0, X(1)
2 = 0) 1

{R1, X
(1)
1 , X

(1)
2 }, {} q(R1 = 0, X(1)

1 = 0, X(1)
2 = 0) 1

Total 7

Moebius Parameterization of the Observed Law in Fig. VI-2(f)

Districts Intrinsic Head/Tail Moebius Parameters Counts
R2 {R2}, {} q(R2 = 0) 1

{R1, X1, X2}

{R1}, {} q(R1 = 0) 1
{X1}, {R1} q(X1 = 0 | R1) 1
{X2}, {R2} q(X2 = 0 | R2) 1
{R1, X2}, {R2} q(R1 = 0, X2 = 0 | R2) 1
{X1, X2}, {R1, R2} q(X1 = 0, X2 = 0 | R1, R2) 1

Total 6

Table VI-II: Moebius Parameterization of the Full and Observed Laws of missing data
ADMGs

We now go over each of these colluding paths and their corresponding latent pro-

jections, as if they appear in a larger graph that is otherwise completely disconnected.

We count the number of Moebius parameters as a function of S, and show that the

full law always has one more parameter than the observed law. One can then imagine

placing these colluding paths in a larger graph with arbitrary connectivity, and arguing

that the full law is still not identified as a consequence of the parameter discrepancy

arising from the colluding path alone. That is, if we show a fully disconnected graph

containing a single colluding path is not identified, then it is also the case that any

edge super graph (super model) is also not identified.
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X
(1)
i

V1 · · · VS Ri

(a)

X
(1)
i

V1 · · · VS Ri

(b)

X
(1)
i

V1 · · · RS Ri

(c)

X
(1)
i

V1 · · · RS Ri

(d)

Xi V ∗
1 · · · V ∗

S Ri

(e)

Xi V ∗
1 · · · RS Ri

(f)

Figure VI-3: (a) Colluding paths (b) Projecting out X(1)

In the following proof we heavily rely on the following fact. Given a bidirected

chain of length V1 ↔, · · · ,↔ VK , of length K, the number of Moebius parameters

required to parameterize this chain is given by the sum of natural numbers 1 to K, i.e.,
K(K+1)

2 . This can be seen from the fact that the corresponding Moebius parameters

are given by the series,

• q(V1 = 0), q(V1 = 0, V2 = 0), . . . , q(V1 = 0, . . . , VK = 0) corresponding to K

parameters.

• q(V2 = 0), q(V2, V3 = 0), . . . , q(V2 = 0, . . . , VK = 0) corresponding to K − 1

parameters.

• . . .

• q(VK = 0) corresponding to 1 parameter.

In counting the number of parameters for a disconnected graph (with the exception

of the colluding path), we can also exclude the singleton (disconnected) nodes from the

counting argument since they account for the same number of parameters in both the

full law and observed law. In the full law they are either q(Rs = 0) or q(X(1)
s = 0) and
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the corresponding parameters in the observed law are q(Rs = 0) or q(Xs = 0 | Rs = 1).

The Moebius parameter counts for each of the colluding paths in Figs. VI-3(a-d) and

their corresponding latent projections in Figs. VI-3(e,f) are as follows.

Figures a, b, and e

1. Number of Moebius parameters in Fig. VI-3(a) is (S+2)(S+3)
2

• A bidirected chain X(1)
i ↔, · · · ,↔ Ri of length S+2, i.e., (S+2)∗(S+3)/2

parameters.

2. Number of Moebius parameters in Fig. VI-3(b) is (S+2)(S+3)
2

• q(X(1)
i = 0), i.e. 1 parameter,

• A bidirected chain V2 ↔ · · · ↔ Ri of length S, i.e. S ∗ (S+1)/2 parameters,

• Intrinsic sets involving V1, i.e., q(V1 = 0 | X(1)
i ), q(V1 = 0, V2 = 0 |

X
(1)
i ), q(V1 = 0, . . . , Ri = 0 | X(1)

i ) corresponding to 2 ∗ (S + 1) parameters.

3. Number of Moebius parameters in Fig. VI-3(e) is (S+2)(S+3)
2 − 1

• Note that even though each proxy Xs that may appear in the bidirected

chain has a directed edge from Rs pointing into it, the corresponding

intrinsic head tail pair that involves both variables, will always have Ri = 1.

Hence, we may ignore these deterministic edges and count the parameters as

if it were a bidirected chain V ∗
1 ↔ · · · ↔ Ri of length S + 1, corresponding

to (S + 1) ∗ (S + 2)/2 parameters,

• When enumerating intrinsic sets involving Xi, we note that {Xi, V
∗

1 , . . . V
∗
S }

is not intrinsic as Ri is not fixable (due to the bidirected path between

Ri and Xi and the edge Ri → Xi). Thus, as there is one less intrinsic set

involving Xi, the number of parameters required to parameterize all intrinsic

sets involving Xi is one fewer, i.e., S + 1 (instead of S + 2) parameters.
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Figures c, d, and f

1. Number of Moebius parameters in Fig. VI-3(c) is (S+2)(S+3)
2

• q(Ri = 0), i.e. 1 parameter,

• A bidirected chain X
(1)
i ↔ · · · ↔ VS−1 of length S, i.e. S ∗ (S + 1)/2

parameters,

• Intrinsic sets involving RS, i.e.,

q(RS = 0 | Ri), q(RS = 0, VS−1 = 0 | Ri), . . . , q(RS = 0, VS−1 = 0 . . . , X(1)
i |

Ri), corresponding to 2 ∗ (S + 1) parameters.

2. Number of Moebius parameters in Fig. VI-3(d) is (S+2)(S+3)
2

• q(X(1)
i = 0), q(Ri = 0), i.e. 2 parameters,

• A bidirected chain V2 ↔ · · · ↔ VS−2 of length S− 2, i.e. (S− 2)∗ (S− 1)/2

parameters,

• Intrinsic sets involving V1 and not RS, i.e., q(V1 = 0 | X(1)
i ), q(V1 = 0, V2 =

0 | X(1)
i ), . . . , q(V1 = 0, V2 = 0, . . . , VS−1 | X(1)

i ), corresponding to 2∗ (S−1)

parameters,

• Intrinsic sets involving RS and not V1, i.e., q(RS = 0 | Ri), q(RS = 0, VS−1 =

0 | Ri), . . . , q(RS = 0, VS−1 = 0, . . . , V2 | Ri) corresponding to 2 ∗ (S − 1)

parameters.

• The intrinsic set involving both V1 and RS, i.e., q(V1 = 0, V2 = 0, . . . , RS =

0 | X(1)
i , Ri), corresponding to 4 parameters.

3. Number of Moebius parameters in Fig. VI-3(f) is (S+2)(S+3)
2 − 1

• q(Ri = 0), i.e. 1 parameter,
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• By the same argument as before, deterministic tails can be ignored. Hence,

we have a bidirected chain Xi ↔ · · · ↔ VS−1 of length S, i.e. S ∗ (S + 1)/2

parameters,

• Intrinsic sets involving RS, i.e.,

q(RS = 0 | Ri), q(RS = 0, VS−1 | Ri), . . . , q(RS , VS−1, . . . , V1 | Ri), correspond-

ing to 2 ∗ S parameters, and the special intrinsic set which results in the

observed law having one less parameter q(RS, VS−1, . . . , V1, Xi | Ri = 1) cor-

responding to just 1 parameter instead of 2 due to the presence of the proxy

Xi in the head and the corresponding Ri in the tail.

Theorem 10 The graphical condition of the absence of colluding paths, put forward

in Theorem 9, is sound and complete for the identification of full laws p(R,O,X(1))

that are Markov relative to a missing data ADMG G.

Proof. Soundness is a direct consequence of Theorem 9 and completeness is a direct

consequence of Lemma. 9.
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