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Agenda

Part I

I Introduce alg fairness considerations via a series of examples

I Statistical fairness criteria

I Issues with statistical fairness criteria

Part II

I Introduce causal inference

I Relevant causal concepts, e.g., mediation and path-specific e�ects

I General causal perspective on algorithmic fairness constraints

Part III

I Imposing causal fairness constraints via constrained optimization

I Example application
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Part I
Intro to alg fairness and statistical fairness criteria



Example 1/4: health risk screening algs

I Obermeyer et al. (2019) examine a commercial risk prediction algorithm used to
manage health decisions for millions of hospital patients.

I The algorithm’s stated goal is to predict complex health needs for the
purpose of targeting an intervention that manages those needs.

I Each patient is assigned risk score R by the alg: prediction of medical
expenditures Y based on claims data from previous year X

R := E[Y | X ]
I X did not include race, and the score was approximately calibrated by race:

E[R | Y , Black] ¥ E[R | Y , White]
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Example 1/4: health risk screening algs ctd.

Are black and white patients with same predicted risk equally healthy? I.e.,

E[H | R, White] ?= E[H | R, Black]

I E[H | R, White] > E[H | R, Black]

Across various definitions of
“healthy," less-healthy Blacks
scored at similar risk scores to
more-healthy Whites.

I Scores are used to screen patients
for a care management program, so
Black patients are systematically
under-enrolled.

I What’s going on here, and how can it be fixed?
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Example 1/4: health risk screening algs ctd.

I E[Y | H, White] > E[Y | H, Black]

Medical expenditures Y di�ered
systematically by race.

I Diagnosis:
“Health costs ”= health needs"
& socially unequal society has racial
disparities in health costs.

Key takeaways:
I Target of prediction (label) can be a bad proxy for the underlying quality of

interest, disparities can be “built in" to the outcome Y .
I Race info was not used in building the algorithm, so direct use of race is

neither necessary nor su�cient for disparities to arise.
I In this case, E[H | R, White] = E[H | R, Black] was used as a criterion to

diagnose a problem.
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Example 2/4: financial lending algs

I Clients apply to bank for loans. Banks make decisions based on default risk:
won’t give loan to “risky” clients. Roughly:

I Based on historical data, model predicts timely repayment vs.
non-repayment (Y = 1 vs 0)

I For new client, based on their characteristics use model to estimate
P(Y = 1)

I Use some threshold to di�erentially o�er loans to clients on the basis of
these predictions
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Example 2/4: financial lending algs ctd.

I Legal concerns may prevent bank from using protected attribute “race”
directly in this model.

I However, strong correlations btw race and other vars (zipcode, neighborhood
SES, home ownership, parental education, ...) may lead to very di�erent loan
rates across race groups even in “race-blind” model.

I Exclusion of race makes little practical di�erence to loan decisions.

Key takeaways:

I “Proxy correlations” illustrate how simply excluding race will fail to address
equity

I Empirical studies suggest that more accurate algorithms my exacerbate
disparities (not eliminate)

I Why? detection of nonlinear relationships among race, outcomes, and other
vars
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Example 3/4: automated resume screening for hiring

I Many institutions use algorithmic tools to automatically screen (or rank)
resumes of job applicants.

I Infamous example: Amazon developed (but supposedly never used) a resume
screening tool that was found to favor male job applicants. According to
Reuters report:

I Penalized resumes that included the word “women’s,” as in “women’s chess
club captain.” Downgraded graduates of two all-women’s colleges.

I Favored candidates who described themselves using verbs more commonly
found on male engineers’ resumes, such as “executed” and “captured.”
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Example 4/4: recividism risk prediction

I Algorithms for recidivism risk prediction have been used in various criminal
justice contexts: pretrial release conditions, bail determinations, etc.

I COMPAS is a tool from the company Northpointe that has been at the center
of much attention since ProPublica published its critical analysis in 2016.

I ProPublica’s analysis mostly focused on di�erences in error rates:
I “Black defendants were far more likely than white defendants to be

incorrectly judged to be at a higher risk of recidivism”, higher false positive
rate for Blacks.

I “White defendants were more likely than black defendants to be incorrectly
flagged as low risk”, lower false negative rate for Whites.

I Authors argued the above amounts to discrimination against Blacks.
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Example 4/4: recividism risk prediction ctd.

I Northpointe published a long response disputing the ProPublica’s findings
and claiming that “Propublica wrongly defines measures of discrimination."

I ProPublica: focus on FPR and FNR, are these equal across groups?
I Northpointe: focus on PPV, is probability of recidivating, given a high risk

score, similar for Blacks and Whites?
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Algorithmic fairness

These examples prompt two main questions:

Q1. Why do algorithms introduce unfair biases?

Q2. What is a good measure of unfairness?

I Algorithms introduce/reproduce/perpetuate disparities
I Reliance on humans on every step of their development.
I Reflecting the socially stratified, disparate, and unfair reality behind data.
I Sensitive features may include: race, gender, sexual orientation, religion, etc.

I Ignoring the sensitive attributes is neither necessary nor su�cient.
I E.g., Northpointe doesn’t directly use race, but uses other factors like area

code that act as potential proxies for race; the two are highly correlated in
segregated neighborhoods.
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Shared structure of prediction tasks

Most typical framing in alg fairness work has been as a (supervised) prediction
problem, with subsequent decision as a simple function (e.g., thresholding) of
predicted value.

‚Y = E[Y | X ]

I Assume decision D = f (‚Y ), e.g., D = I(‚Y Ø ·).

I Often Y is an imperfect proxy for a latent attribute (“credit-worthiness,”
“academic success”).

I Alternative tasks include: rankings/recommendations, unsupervised learning
(e.g. clustering by attributes), or optimal decision-rule learning problems.

Many researchers have focused on modifying algorithms to respect “fairness
constraints."
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Statistical fairness criteria

I Disparate impact: Decision ‹‹ Group

p(‚Y = 1 | S ”= 1)
p(‚Y = 1 | S = 1)

Ø 1 ≠ ‘

I Demographic/statistical parity: Decision ‹‹ Group

p(‚Y = 1 | S = 1) ≠ p(‚Y = 1 | S ”= 1) Æ ‘

I Equalized odds: Decision ‹‹ Group | Y

p(‚Y = 1 | S = 1, Y = 0) ≠ p(‚Y = 1 | S ”= 1, Y = 0) Æ ‘,

p(‚Y = 1 | S = 1, Y = 1) ≠ p(‚Y = 1 | S ”= 1, Y = 1) Æ ‘

I Equal opportunity: Decision ‹‹ Group | Y = 0

p(‚Y = 1 | S = 1, Y = 0) ≠ p(‚Y = 1 | S ”= 1, Y = 0) Æ ‘

I Calibration: Y ‹‹ Group | Decision

p(Y = 1 | S = 1, ‚Y ) ≠ p(Y = 1 | S ”= 1, ‚Y ) Æ ‘

13/90



Conflicts in statistical fairness criteria

I Chouldechova (2017) shows that so long as base rates di�er across groups
(e.g., di� recividism rates), then “equalized odds” and “calibration” cannot
be both satisfied.

I Kleinberg et al. (2016) prove a similar incompatibility result for balance in the
positive class, balance in the negative class, and calibration within groups.

I Barocas et al. (2019) also derive similiar conflicts between “statistical parity”
and the other two, when base rates are not equal.

I This presents a problem: if associational fairness criteria are each seemingly
plausible but mutually incompatible in real problems, which should we
sacrifice?
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Limitations of statistical fairness criteria

Associative/statistical measures of (un)fairness:

I Tailored for classification problems

I Ignore the causal relations among variables

I Not adaptable to use context-specific information

Desirable definition of (un)fairness should:

I Use context-specific information

I Listen to causal relations

I Be “nonparametric"
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Possible causal structures underlying the data

Directed Acyclic Graphs (DAGs) are often used to encode causal relations.

I Arrows in the DAG represent (possible) causal relations among variables
(e.g., that “skill level is a cause of job performance”)

I Conditional independence relations among variables can be read from the
DAG looking at “blocked” paths (d-separation criterion)

As an example, let:

I S denote relevant group membership
I Y denote outcome of interest (health, loan repayment, recidivism)
I M denote variables causally dependent on group membership
I X denote other covariates

X S

M

Y

In this case we assume S and X are independent, though can also allow that S and X
are associated somehow (e.g., selection into sample)
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Possible causal structures underlying the data

X S

M

Y

‚Y

I Even if prediction alg does not use S, as long as there is a mechanism
connecting S to any variable that determines ‚Y , statistical parity will be
violated: ‚Y ”‹‹ S

I Also guaranteed to violate equalized odds: ‚Y ”‹‹ S | Y

I If S æ · · · æ Y , will not have calibration generally, Y ”‹‹ S | ‚Y
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Main methodological questions

• These considerations have led to various causality-informed perspectives on
algorithmic fairness.

• In the remaining of this short course, we would like to answer three main
methodological questions:

1. How to express fairness principles mathematically?
(using causal and counterfactual reasoning)

2. How to modify statistical procedures to reduce unfair e�ects?
(constrained learning)

3. How to generalize and deploy these modified algorithms?

I RN and I. Shpitser, Fair Inference on Outcomes, AAAI 2018.
I RN, D. Malinsky, and I. Shpitser, Learning Optimal Fair Policies, ICML 2019.
I RN, D. Malinsky, and I. Shpitser, Optimal Training of Fair Predictive Models, CLeaR 2022.

18/90



Part II
Intro to causal inf and causal fairness criteria



Overview of Part II

1 Basics of causal inference
I Potential outcomes and graphs: the mathematical language of causation.
I Causal parameter: average causal e�ect (ACE)
I Identification and estimation (briefly).

2 Mediation analysis
I Direct and indirect e�ects.
I Identification and estimation (briefly).

3 Causal fairness criteria
I Path-specific e�ects in predictive decision support (Nabi et al., 2018)
I Path-specific e�ects in sequential decision making (Nabi et al., 2019)
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Basics of causal inference



Causal inference: a multidisciplinary area of research
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Causality in philosophy

David Hume (1711-1776)

We may define a cause to be an object followed by another, and where all
the objects, similar to the first, are followed by objects similar to the second,
. . . where, if the first object had not been the second never had existed.

I Imperfect regularities: smoking does not always give you cancer.

I Irrelevance: yelling magic words before throwing salt into water does not cause
the salt to dissolve.

I Spurious regularities: low pressure systems can create storms and they also cause
the pressure reading in a barometer to drop. So we will always observe the reading
in the barometer to drop before a storm, but this is clearly not causing the storm!

I Encoding uncertainty via probabilities gives us a way of addressing some (but
not all) of these issues

21/90



Causal deniers

Bertrand Russell (1872-1970)

All philosophers [. . .] imagine that causation is one
of the fundamental axioms or postulates of science,
yet, oddly enough, in advanced sciences such as grav-
itational astronomy, the word “cause" never occurs.
The law of causality, I believe, like much that passes
muster among philosophers, is a relic of a bygone
age, surviving, like the monarchy, only because it is
erroneously supposed to do no harm.
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Causality in statistics (using data)

James Lind (1716-1794)

I First reported Randomized Controlled Trial

I How to treat scurvy? (James Lind,1 1747)

I 12 scorbutic sailor treated with di�erent acids, e.g. vinegar, cider, and
lemon but otherwise treated them exactly the same.

I Only the condition of the sailor treated by lemon improved.
I Scurvy results from a lack of vitamin C.

1A treatise of the scurvy: http://inspire.stat.ucla.edu/unit_04/scurvy.pdf
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Modern view of causal inference
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Association vs causation

Most scientific inquiry/data analyses fall into one of the two paradigms:

I Association (seeing, observing)

I Associational paradigms: (Un)Supervised learning, Reinforcement learning

I Causation (doing, intervening, retrospection, understanding)

I Causal paradigms: E�ect quantification, Causal discovery, Decision making
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Association vs causation ctd.

The following two statements can simultaneously be true:

I (Predictive) Those who receive HIV treatment immediately upon diagnosis
have shorter survival time, on average, than those who wait.

I Waiting to get treated sounds more e�ective!

I (Causal) Given the choice to treat immediately or wait until symptoms
develop, treating immediately will lead to longer survival on average.

I Waiting to get treated sounds less e�ective!

I A classic description of confounding that teases apart prediction from
causation.
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Example: survival time as a function of treatment initiation
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Example: survival time as a function of treatment initiation

Sub-populations with varying levels of disease severity (Low, Medium, High)
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Simpson’s paradox

Simpson’s paradox:
I Direction of correlation changes when analyzing sub-populations vs

population as a whole.

A causal explanation: treatment decisions are made based on patients’
characteristics and clinical history.

I Patient’s severity of disease a�ects treatment initiation.
I Severity of disease a�ects the survival time.
I Severity of disease is a confounder.

Treatment initiation Survival time

Severity of disease

Takeaways:
I Machine learning and statistical methods search for patterns, and they often

find spurious correlations.

I To take actions and make decisions, we need more than mere
correlations!

28/90



Causal workflow

1. Defining causal quantities, this will be done in terms of counterfactuals.

2. Defining a causal model that links counterfactuals to factual variables.
I Encoding assumptions necessary to identify causal quantities.
I Identifying the causal estimands as a function of observed data in this

model.

3. Defining a statistical model to deal with the curse of dimensionality.
I Performing statistical inference which includes testing and estimating the

magnitude of a causal e�ect given the observed data.

4. Assessing assumptions (sensitivity analysis).
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Counterfactuals

I Treatment A: an intervention or exposure; investigators wish to assess the
e�ect of treatment compared to no treatment.

I Suppose you’re contemplating taking an aspirin for your headache, and the
outcome Y denotes whether or not you’re headache free say in an hour.

I As a thought experiment, you may think of two potential outcome variables
either of which may be observed depending on whether or not you decide to
take the aspirin.

I Y (0): headache status after not taking aspirin
I Y (1): headache status after taking aspirin

I Y (a) is the outcome that you would observe if, possibly countering to fact,
you followed treatment a œ {0, 1}.

I Y (a) is referred to as a potential outcome or a counterfactual.
I Di�erent notations in the literature: Y a, Ya, Y (a), and

do-calculus notation of Pearl: Y | do(A = a)

I Observed and potential outcomes share the same domain space Y , Y (a) œ Y
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Establishing causality

I We can establish causality by comparing potential outcomes:
I Y (1) = Y (0), aspirin has no e�ect on my headache outcome
I Y (1) > Y (0), aspirin has a beneficial e�ect on my headache outcome
I Y (1) < Y (0), aspirin has a harmful e�ect on my headache outcome

I Individual-level treatment e�ect (ITE):

ITE := Yi (a = 1) ≠ Yi (a = 0)

I Average treatment e�ect (ATE):

ATE := E[Y (1)] ≠ E[Y (0)] =
ÿ

y

y ◊ p(y(1)) ≠

ÿ

y

y ◊ p(y(0))

I “Oracle table": contains potential outcomes for every individual

ID Y (1) Y (0) Y (1) ≠ Y (0)
1 1 0 1 (protected)
2 1 1 0 (immune)
3 0 1 ≠1 (harmed)
4 0 0 0 (doomed)
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Fundamental problem of causal inference

I Fundamental problem of causal inference is that we only observe one of the
two potential outcomes.

I It means, if in the data sample, you happen to be a person with A = 1, then
Y (1) is observed and Y (0) is missing, and vice versa for a person with A = 0.

ID A Y Y (1) Y (0)
1 1 0 0 ?
2 1 1 1 ?
3 0 1 ? 1
4 0 0 ? 0

I It is impossible to evaluate individual-level causal e�ects.

I This is fundamentally a missing data problem. The only di�erence is that the
full data is never observed with probability one.

I All is not lost! Under some assumptions, we can still say something about
population-level causal e�ects.
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The task of identification

I Need assumptions to link the counterfactual distribution of p(Y (a)) to the
observed data distribution. This link leads to identification arguments.

I A parameter is said to be identified under a particular collection of
assumptions if it can be expressed as a unique function of the distribution
(law) of the observed variables.

I Example: under consistency, conditional ignorability, and positivity
assumptions, the ACE is identified. Let’s see what these assumptions mean.
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Identification assumptions

1. Consistency: the observed outcome is the same as the potential outcome
where we set the individual’s treatment to the same value they actually
received. That is, Y (A) = Y or in other words:

Y = A ◊ Y (1) + (1 ≠ A) ◊ Y (0).

2. Conditional ignorability: assume X is a rich vector of covariates that contains
all common causes of A and Y (that is all risk factors for Y that also
determine A),

Y (a) ‹‹ A | X , for all a œ 0, 1.

This means within levels of X , the data mimics a randomized trial with the
randomization probabilities now allowed to depend on X .

3. Positivity:

If p(X = x) > 0, then p(A = a | X = x) > 0.
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Identification of ATE

If consistency, positivity, and conditional randomization assumptions hold:

E[Y (a)] =
ÿ

x,y

y ◊ p(y(a) | x) ◊ p(x) (by definition)

=
ÿ

x,y

y ◊ p(y(a) | x , A = a) ◊ p(x) (by conditional randomization)

=
ÿ

x,y

y ◊ p(y | x , A = a) ◊ p(x) (by consistency)

=
ÿ

x

E[Y | x , A = a] ◊ p(x) (by definition)

= E
#
E[Y | X , A = a]

$

This functional is known as adjustment functional or g-formula.2

Therefore ACE of A on Y is identified as follows:

ATE := E[Y (1)] ≠ E[Y (0)] = E
#
E[Y | X , A = 1] ≠ E[Y | X , A = 0]

$
.

2James Robins. “A new approach to causal inference in mortality studies with a sustained exposure period –
application to control of the healthy worker survivor e�ect", In Mathematical Modeling, 1986. [link]
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Estimation of ATE

Under consistency, positivity, and conditional randomization, we have:

E[Y (1)] ≠ E[Y (0)] =
ÿ

x

Ó
E[Y | x , A = 1] ◊ ≠E[Y | x , A = 0]

Ô
◊ p(x).

Given a sample of n i.i.d. units {Xi , Ai , Yi }, the statistical task is an inference on
the identifying functional of the ATE.

We now discuss the following methods:
I Nonparametric g-computation (nonparametric plugin)
I Nonparametric IPW
I Parametric g-computation (parametric plugin)
I Parametric IPW
I Doubly robust estimator (augmented IPW, AIPW)
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Introducing causal graphs

I Causal relationships in multivariate systems can be very complex.
I Will think about causal relationships using graphs, which are a helpful way to

visualize complex causal models.
I Nodes are variables, æ means “directly causes.”
I Absences of nodes and edges are important.

I General method (d-separation) for reading o� independences via paths:
I A d-separated from B if all paths are “blocked.”
I A path is blocked if it has a blocking triplet.
I Blocking triplets:

I V1 æ V2 æ V3 (V2 conditioned on).
I V1 Ω V2 æ V3 (V2 conditioned on).
I V1 æ V2 Ω V3 (neither V2 nor any descendant of V2 is conditioned on).
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Introducing causal graphs ctd.

I We can read o� independencies between counterfactuals and factuals by
constructing Single World Intervention Graphs (SWIGs)

I Randomization example (one treatment A, one outcome Y )
I Observed situation: A Y A ”‹‹ Y

I Hypothetical situation: A a Y (a) A ‹‹ Y (a)

I Conditional randomization example
I Observed situation:

A
X

Y A ”‹‹ Y | X

I Hypothetical situation:

A a

X

Y (a) A ‹‹ Y (a) | X
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Mediation analysis



Overview of mediation analysis

A M Y

X

I Decompose e�ect of T on Y along di�erent causal pathways

ACE = Direct E�ect¸ ˚˙ ˝
A æ Y

+ Indirect E�ect¸ ˚˙ ˝
A æ M æ Y

I Y (a): potential (counterfactual) outcome Y had A = a

I M(a): potential (counterfactual) mediator M had A = a

I Y (a, m): potential (counterfactual) outcome Y had A = a and M = m

I Y (a, M(aÕ)): potential outcome Y had A = a and M behaving as if A = aÕ
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Direct and indirect e�ects

I Natural direct e�ect (NDE): comparing outcome response to A = 1 and A = 0
while M takes on the natural value under A = 0 (i.e., M(0))

NDE = E[Y (1, M(0)) ≠ Y (0, M(0))]

I Example: what’s the e�ect of genetic variant on lung cancer if for each individual we set the smoking to
whatever value they would naturally smoke had they not had the variant?

I Natural indirect e�ect (NIE): comparing outcome response to M(1) and M(0)
while treatment is fixed to A = 1

NIE = E[Y (1, M(1)) ≠ Y (1, M(0))]

I Example: if everyone had the variant, then how would the lung cancer rate change if level of smoking
would change from the value it would have naturally arise under presence of variant vs absence of
variant?

I E�ect decomposition:

E[Y (1)] ≠ E[Y (0)] = E[Y (1, M(1))] ≠ E[Y (0, M(0))]
= E[Y (1, M(1))] ≠ E[Y (1, M(0))] + E[Y (1, M(0))] ≠ E[Y (0, M(0))]
= NIE + NDE
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NIE = E[Y (1, M(1)) ≠ Y (1, M(0))]

I Example: if everyone had the variant, then how would the lung cancer rate change if level of smoking
would change from the value it would have naturally arise under presence of variant vs absence of
variant?

I E�ect decomposition:

E[Y (1)] ≠ E[Y (0)] = E[Y (1, M(1))] ≠ E[Y (0, M(0))]
= E[Y (1, M(1))] ≠ E[Y (1, M(0))] + E[Y (1, M(0))] ≠ E[Y (0, M(0))]
= NIE + NDE
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Example of a nested counterfactual Y (a, M(a
Õ
)): smoking

A
(smoking)

AM
(smoke)

AY
(nicotine)

M
(cancer)

Y
(health)

AY

nicotine
AM

smoke
Intervention

Y (1, M(0)) 1 0 nicotine patch

Y (0, M(1)) 0 1 nicotine-free cigarettes

Y (1, M(1)) = Y (1) 1 1 smokers

Y (0, M(0)) = Y (0) 0 0 non-smokers

I Direct e�ect: nicotine patch (compared to no smoking)

NDE = E[Y (1, M(0)) ≠ Y (0)]

I Indirect e�ect: nicotine-free cigarettes (compared to smoking)

NIE = E[Y (1) ≠ Y (1, M(0))]
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Identification assumptions for E
#
Y

!
a, M(aÕ)

"$

A M Y

X

1. Conditional ignorability:

1.1 Y (a) ‹‹ A | X (same as in CDE)

i.e., conditioning on X su�ces to deal w confounding btw A and Y .

1.2 Y (m) ‹‹ M | A, X (same as in CDE)

i.e., conditioning on A, X su�ces to deal w confounding btw M and Y .

1.3 M(a) ‹‹ A | X

i.e., conditioning on X su�ces to deal w confounding btw A and M.

2. Cross-world assumption:

2.1 Y (a, m) ‹‹ M(aÕ) | X

i.e., within levels of X , causal mechanisms for M and Y have independent
sources of noise, even if treatments “mismatch."

3. Positivity: As stated before. (same as in CDE)

4. Consistency: As stated before. (same as in CDE)
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Identification and estimation of the direct e�ect

Direct e�ect = E[Y (1, M(0))] ≠ E[Y (0)]
A M Y

X

E[Y (1, M(0))] = E
Ë ÿ

m

E[Y | x , m, A = 1] ◊ p(M = m | x , A = 0)
È

= g(PZ )
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Identification and estimation of the direct e�ect

Direct e�ect = E[Y (1, M(0))] ≠ E[Y (0)]
A M Y

X

E[Y (1, M(0))] = E
Ë ÿ

m

E[Y | x , m, A = 1] ◊ p(M = m | x , A = 0)
È

= g(PZ )

Plugin estimator: Pn

1 q
m

‚E[Y | xi , m, A = 1] ◊ ‚p(M = m | xi , A = 0)
2

Inverse probability weighting: p(A | X), p(M | X , A)

Mixed estimator: p(A | X), E[Y | X , A, M]

Augmented IPW: p(A | X), p(M | X , A), E[Y | X , A, M] (triply robust)

(Tchetgen Tchetgen and Shpitser, 2012)

43/90



Path-specific e�ects: multiple mediators

I Direct e�ect: e�ect along the direct arrow.

I Indirect e�ect: e�ect along all other arrows.

I Maybe we want e�ect along a specific path or a bundle of paths.

I E�ect along a specified set of paths is called a path-specific e�ect, where

I The treatment assignment is fixed along the paths that we are not
interested in, and

I It changes along the specified paths.
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An example of a path-specific e�ect

A L M Y

What is the e�ect of A on Y through L?

That is the e�ect along the following paths:

I A æ L æ Y

I A æ L æ M æ Y

It’s a counterfactual contrast of the following form:

E

C
Y

3
a, L

!
aÕ" , M

!
a, L(aÕ)

" 4D
≠ E [Y (a)]
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Causal fairness criteria



Legal opinions on anti-discrimination

7th circuit court case (Carson vs Bethlehem Steel Corp, 1996):

“The central question in any employment-discrimination case is whether the
employer would have taken the same action had the employee been of a di�erent

race (sex, national origin, etc.) and everything else had remained the same."
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Mathematical expression of a legal quote

Would the employer have taken the
same action had the employee been
of a di�erent race and everything
else had remained the same?

S
(Race)

M
(Characteristics)

Y
(Hiring status)

X
(Baselines)

Name-swapping experiments to evaluate racism in hiring:

I African American: S = 1, Caucasian: S = 0,

I Y (1, M(0)) : hiring a Caucasian with an African American sounding name

I Y (0) : hiring a Caucasian

I Direct e�ect: E
#

Y
!

1, M(0)
"$

≠ E
#

Y (0)
$
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Is unfairness always about the direct e�ect of S on Y ?

S
(Sex)

M
(Physical tests)

Y
(Hiring status)

X
(Baselines)

48/90



Is unfairness always about the direct e�ect of S on Y ?

S
(Sex)

M
(Physical tests)

Y
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X
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I S æ M æ Y X

48/90



Is unfairness always about the direct e�ect of S on Y ?

S
(Sex)

M
(Physical tests)

Y
(Hiring status)

X
(Baselines)

I Y : hiring a fire fighter

I S æ M æ Y X

I Y : hiring an accountant

I S æ M æ Y 7

48/90



Is unfairness always about the direct e�ect of S on Y ?

S
(Sex)

M
(Physical tests)

Y
(Hiring status)

X
(Baselines)

I Y : hiring a fire fighter

I S æ M æ Y X

I Y : hiring an accountant

I S æ M æ Y 7

I So the answer is NO! Definition should be context-specififc.
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From mediation to arbitrary path-specific e�ects

S
(Race)

M
(Insurance)

L
(Complications)

Y
(Health risk score)

X
(Baselines)

I Path-specific e�ect (PSE):
I Along pathways of interest, all nodes behave as if S = s,
I Along all other pathways, nodes behave as if S = s Õ.
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From mediation to arbitrary path-specific e�ects

S
(Race)

M
(Insurance)

L
(Complications)

Y
(Health risk score)

X
(Baselines)

I S æ Y 7

I S æ M æ Y 7

I S æ M æ L æ Y 7

I S æ L æ Y X

E
Ë

Y
1

s, M(s), L
!

sÕ, M(s)
"2È

= g(PZ )

I Path-specific e�ect (PSE):
I Along pathways of interest, all nodes behave as if S = s,
I Along all other pathways, nodes behave as if S = s Õ.

49/90



From mediation to arbitrary path-specific e�ects

S
(Race)

M
(Insurance)

L
(Complications)

Y
(Health risk score)

X
(Baselines)

I Path-specific e�ect (PSE):
I Along pathways of interest, all nodes behave as if S = s,
I Along all other pathways, nodes behave as if S = s Õ.

I Identification and estimation of PSEs:
(Works by Shpitser, Tchetgen Tchetgen, VanderWeele, Avin, Pearl, Robins,
Richardson, Malinsky, Miles, Diaz, and more)
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Our definition of fairness

I ACE = PSEunfair + PSEfair

I PSEunfair: e�ect of S on Y along unfair causal pathways

(RN and Shpitser, Fair Inference on outcomes, AAAI, 2018.)

I Determining unfair pathways is a domain specific issue
I This is a feature not a bug.

50/90



Context: sequential decision making

Decision rule: fAi : Hi ‘æ Ai

Policy: fA = {fA1 , fA2 }

(dynamic treatment regimes)

H1

A1

Y1

A2

Y

I Counterfactual response under fA is denoted by Y (fA)

I Optimal policy: f ú
A := arg maxfA E[Y (fA)]

I Fairness concerns arise since H1 = {X , S, M}
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Example: child welfare

Baseline

Race

Mediators

Decision

Outcome

I Decision to dispatch case-worker may depend on all available information, and
optimal decision would minimize negative outcomes (e.g. child separation and/or
hospitalization).

I Unconstrained optimal decision-making may lead to unacceptable racial disparities.

I Ignoring race information is insu�cient: dependence due to proxies

I Is it su�cient to define fairness in automated descision making the same way as
we did in doing fair predictions?
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A causal perspective

Baseline

Race

Mediators

Decision

Outcome

I In a “fairer world,” certain (discriminatory or unjust) mechanisms would be absent.

I This corresponds to the absence of some path-specific causal e�ects (RN and
Shpitser, 2018).

I Approximate the “nearest fair world” and learn optimal policies there (RN,
Malinsky, Shpitser, 2019)

I Must sacrifice some optimality to make decisions fairly.
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Fairness in automated decision making

X

S

M

A1

Y1

A2

Y

I Retrospective bias:
bias in historical data used as input to
learning procedure.

Example: unfair paths from S to Y :
{S æ Y , S æ Y1 æ · · · æ Y ,

S æ A1 æ . . . æ Y ,
S æ A2 æ . . . æ Y }.

PSEsy = g1(PZ )

X

S

M

A1

Y1

A2

Y

I Prospective bias:
functional form of policy depends on
sensitive features.

Example: unfair paths from S to A1, A2:
{S æ A1},
and
{S æ A2, S æ A1 æ . . . æ A2}

PSEsak = gk(PZ )

Z = {X , S, M, A1, ..., AK , Y1, ..., YK }
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Part III
Constrained learning, example application



Two types of questions

• Let O = (X , S, Y ) ≥ P œ M

• Assume � : P œ M ‘æ �(P) œ ¯, e.g.,

I Supervised learning:
�(P) = EP [Y | X , S] or �(P) = P(Y = 1 | X , S)

I Dynamic treatment regime:
�(P) = arg maxfaœF E[Y (fa)], where fa : H ‘æ a œ A

• Given �(P):

1. Does �(P) encode unfair biases?
I Various notions of fairness were discussed earlier

�� : P œ M ‘æ ��(P) œ ˆ

2. How to mitigate unfair biases ��(P) from �(P)?
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Overview of Part III

How to mitigate unfair biases ��(P) from �(P)?

1. Predictive decision support
(make decisions only based on model outputs)

2. Sequential decision making
(make decisions based on optimizing a utility function)

3. Data application
(using COMPAS data)
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Predictive decision support

Let �(P) = P(Y = 1 | X , S)

a. Pre-process the observed data O

b. Post-process the statistical output �(P)

c. Re-train �(P) subject to fairness constraints



Pre-process data O

I Let �(P) = P(Y = 1 | X , S), and

I Let ‚Y = 1 if �(P) > ”, and 0 otherwise (dependent on �, ”)

I Constraint ��(P) : ‚Y ‹‹ S

I “Independence", demographic/statistical parity

I Approach: representation learning (Zemel et al.; 2013)

X , S representation Z �(P) = only a function of Z

Find data representation Z by:
I Maximizing mutual information between {X , Z}, and
I Minimizing mutual information between {S, Z}.

I Train �ú(P) = P(Y = 1 | Z)
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Post-process �(P)

I Let O = {C , S, M, Y } and �(P) = EP [Y | C , S, M]

I Constraint: unfair path-specific e�ects (N, S; 2018)

Example: assume indirect e�ect of S on Y is unfair:

��(P) := E[Y (0, M(1))] ≠ E[Y (0)]

Approach: Chiappa (2019) suggests to learn �ú(P) by:

I “Correcting" all descendants of S along unfair pathways

mmod
i = ◊m + ◊m

c ci +��◊
m
s si + ‘m

i

ymod
i = ◊y + ◊y

c ci + ◊y
s si + ◊y

mmmod
i + ‘y

i

��(P) = ◊m
s ◊ ◊y

m

S M Y

C
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Constrained learning

I Impose the pre-specified constraint at the training time

I Solving a constrained optimization problem

I In the remaining, we discuss approaches outlined in:

1. N & S. “Fair inference on outcomes." AAAI 2018.
2. N, M, & S. “Learning optimal fair policies." ICML 2019.
3. N, M, & S. “Optimal training of fair predictive models." CLeaR 2022.

59/90



Defining a fair world/distribution

I Idea: move the statistical task from P(O) to Pú(O)

I P(O) : observed (unfair) data distribution

I �(P) : pre-specified notion of fairness

I Pú(O) : fair distribution
I The closest distribution to P(O) where �(P) is satisfied

Definition: fair world P
ú(O)

Let ‘l , ‘u denote lower/upper tolerance bounds on �(P).

Pú(O) © arg min
Q

DKL(P || Q),

s.t. ‘l Æ �(P) Æ ‘u.
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Approximating the fair world

I Assume we observe n i.i.d. copies of O ≥ P– œ M
par

I M
par denotes a parametric model

I – is a finite set of parameters that index a distribution

I Let –ú be a finite set that indexes the fair distribution Pú

I Estimate –ú via solving:

„–ú = arg max
–

Ln(O; –)

subject to ‘l Æ ‚�n(P–) Æ ‘u,

where Ln(O; –) denotes the likelihood of observed data, and
‚�n(P–) is an estimator for �(P–)

I �(P–ú ) is the “fair version" of �(P–)

I There are three main discussion points
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#1 Multiple fair worlds

I We might have multiple candidates for ‚�n(P–)

I Assume O = (X , S, M, Y ) and �(P) is the direct e�ect of S on Y

�(P) = EPx

C
ÿ

m,y

y ◊ {P(y | S = 1, X , m) ≠ P(y | S = 0, X , m)} ◊ P(m | S = 1, X)

D

I Candidate estimators of �(P) use di�erent parts of P(O):

I Plugin estimator: P(M, Y | X , S)

Pú
1 (O) = P(X) ◊ P(S | X) ◊ Pú(M | X , S) ◊ Pú(Y | X , S, M)

I E�cient influence function: P(S, M, Y | X)

Pú
2 (O) = P(X) ◊ Pú(S | X) ◊ Pú(M | X , S) ◊ P(Y | X , S, M)

I How are Pú
1 and Pú

2 compared to P?
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Comparing fair worlds

Theorem (Nabi et al., 2020)
Let Z1, Z2 ™ O. Let Pú

1 constrain PZ\Z1 and Pú
2 constrain PZ\Z2 .

Pú
1 (O) = arg min

Q
DKL(P || Q) s.t. ‘l Æ �(P) Æ ‘u and Q(Z1) = P(Z1),

Pú
2 (O) = arg min

Q
DKL(P || Q), s.t. ‘l Æ �(P) Æ ‘u and Q(Z2) = P(Z2).

If Z2 ™ Z1 ™ O, then DKL(P || Pú
2 ) Æ DKL(P || Pú

1 ).
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“Optimal" fair world

I Can constrain the entire P(O) to be fair.

I Empirical likelihood methods particularly appealing for constraining P(X)
(Owens; 2001)

I Let’s assume �(P) = E[m(X ; –)] is a path-specific e�ect.

I Maximize the hybrid likelihood:

arg max
Pi ,–

nŸ

i=1

non≠parametric˙˝¸˚
Pi

parametric˙ ˝¸ ˚
P(Y |mi , si , xi ; –y ) P(M|si , ci ; –m) P(S|xi ; –a)

such that
nÿ

i=1

Pi = 1,

nÿ

i=1

Pi m(Xi ; –) = 0,

where O = {X , S, M, Y }.

I Can solve this via Lagrange multiplier methods.
(Empirical likelihood literature)
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#2 Fairness constraints and distributional shifts

I Idea: move the statistical problem from P to Pú

I Issue: BUT samples are drawn from P and not Pú

I Suggestion: use unconstrained knowledge btw P and Pú

I Example: given i th individual Oi = (Xi , Si , Mi , Yi =?)

I Fair world:

Pú(O) = P(X , S)¸ ˚˙ ˝
unconstrained

◊ Pú(M | X , S) ◊ Pú(Y | X , S, M)

I Fair prediction:

Eú[Yi | Xi , Si ] =
ÿ

m

Eú[Yi | Xi , Si , m] ◊ Pú(m | Xi , Si )
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#3 Complex optimization problem

I Typical learning problem of the form:

–ú = arg max
–

Ln(O; –)

subject to ‚�n(P–) = 0.

is very hard in general, mainly because �(P) is often a complex functional of
observed data.

I Alternative, use structural nested model ideas (Robins; 1999).

I Reparameterize the likelihood.
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Likelihood re-parameterization

E[Y | X , S, M] = E[Y | X , S, M] ≠ E[Y | S, X = 0, M = 0]¸ ˚˙ ˝
f (X ,S,M)

≠

ÿ

X ,M

f (X , S, M) ◊ P(M | S = 0, X) ◊ p(X)

+
ÿ

X ,M

E[Y | X , S, M] ◊ P(M | S = 0, X) ◊ P(X)

¸ ˚˙ ˝
„(S) = w0+ws ◊S

.

The coe�cient ws corresponds to the direct e�ect, since

NDE =
ÿ

X ,M

Ó
E[Y | X , S = 1, M] ≠ E[Y | X , S = 0, M]

Ô
P(M | S = 0, X) P(X)

= „(S = 1) ≠ „(S = 0)
= ws
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Likelihood re-parameterization ctd.

(N, M, S. “Optimal training of fair predictive models." CLeaR 2022)
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Constrained learning: a Bayesian approach

I Described methods so far are fundamentally frequentist

I Bayesian methods can be adapted
I Sample the posterior using Markov chain Monte Carlo approaches
I Use the sample to compute any function of the posterior distribution

I E.g., BART, a popular Bayesian random forest method
(Chipman et al.; 2010)

I Construct a distribution over a forest of regression trees
(with a prior that favors small trees)

I Sample the posterior using Gibbs sampling
I Reject all draws that violate the constraint
I Gibbs sampler will generate samples from a constrained posterior directly

(Gelfand et al., 1992)

I Finding novel ways to solve the constrained optimization is an open area of
research
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Sequential decision making



More complex statistical targets

Example: Sequential decision making

Decision rule: fAi : Hi ‘æ Ai

Policy: fA = {fA1 , fA2 }

(dynamic treatment regimes)

H1

A1

Y1

A2

Y

I Counterfactual response under fA is denoted by Y (fA)

I Optimal policy: f ú
A := arg maxfA E[Y (fA)]

I Fairness concerns arise since H1 = {X , S, M}
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Sources of bias in policy learning

X

S

M

A1

Y1

A2

Y

I Retrospective bias:
bias in historical data used as input to
learning procedure.

Example: unfair paths from S to Y :

{S æ Y , S æ Y1 æ · · · æ Y ,
S æ A1 æ . . . æ Y ,
S æ A2 æ . . . æ Y }.

PSEsy = �1(P)

X

S

M

A1

Y1

A2

Y

I Prospective bias:
functional form of policy depends on
sensitive features.

Example: unfair paths from S to A1, A2:

{S æ A1},
{S æ A2, S æ A1 æ . . . æ A2}

PSEsak = �k (P)
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Defining a fair world/distribution

I P(O): observed (unfair) distribution

I A set of identified unfair PSEs denoted by �j(P) ’j œ {1, ..., J}

I Pú(O): fair distribution
I Close to P(O) via Kullback-Leibler divergence
I A distribution where unfair e�ects are null

I Give lower/upper tolerance bounds ‘≠
j , ‘+

j , Pú(O) is defined as:

Pú(O) © arg min
Q

DKL(P || Q)

such that ‘≠
j Æ �j,n(P) Æ ‘+

j , ’j œ {1, ..., J}
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Approximating the fair world with finite samples

I Assume n iid copies of O ≥ P– œ M
par

I Likelihood function: Ln(O; –)

I Let ‚�n(P–) denote the estimator for �(P–)

I Let –ú denote the set of parameters that index Pú(O)

I Estimate –ú via solving:

„–ú = arg max
–

Ln(O; –)

such that ‘≠
j Æ ‚�j,n(P–) Æ ‘+

j , j = 1, . . . , J .
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Example: a two-stage decision point

Approximate Pú(O) by solving:

‚–ú = arg max
–

Ln(O; –)

s.t. ‘≠
j Æ ‚�j,n(P–) Æ ‘+

j , j = 1, 2, 3.

X

S

M

A1

Y1

A2

Y

Consistent estimators of PSEsy and PSEsak :

‚�sy (P) =
1
N

Nÿ

n=1

) I(Sn = s)
P(Sn|Xn)

P(Mn|sÕ, Xn)
P(Mn|s, Xn)

≠
I(Sn = sÕ)
P(Sn|Xn)

*
Yn,

‚�sa1 (P) =
1
N

Nÿ

n=1

) I(Sn = s)
P(Sn|Xn)

P(Mn|sÕ, Xn)
P(Mn|s, Xn)

≠
I(Sn = sÕ)
P(Sn|Xn)

*
A1n,

‚�sa2 (P) =
1
N

Nÿ

n=1

) I(Sn = s)
P(Sn|Xn)

P(Mn|sÕ, Xn)
P(Mn|s, Xn)

≠
I(Sn = sÕ)
P(Sn|Xn)

*
A2n.

Constraints involve P(S | X ; –s) and P(M | S, X ; –m) models.
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Breaking the cycle of injustice

I Let Pú(M | S, X ; –m) and Pú(S | X ; –s) be the constrained models chosen to
satisfy PSEsy = PSEsa1 = PSEsa2 = 0

I Let ÂP(O) be the joint distribution induced by Pú(M|S, X ; –m) and
Pú(S|X ; –s):

ÂP(O) © P(X)Pú(S|X ; –s) Pú(M|S, X ; –m)
KŸ

k=1

P(Ak |Hk)P(Yk |Ak , Hk).

I Then PSEsy and PSEsak taken wrt ÂP(O) are also zero.

=∆ constraining the S and M models induces a “fair distribution” no
matter how Ak or Yk are determined.
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Three strategies for policy estimation

We consider three strategies for estimating the optimal policy:

I Q-learning

I Value search

I G-estimation

In each case, we must modify these procedures to operate wrt the fair distribution.

As an example, let’s look at value search.
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Optimal fair policy: Value search

I Optimal policy: f ú
A = arg maxfA E[Y (fA)]

I Unfair world: expectations wrt to P(O)

E[Y (fA)] = E
Ë I(A1 = fA1 (H1))

P(A1 | H1; Â)
◊

I(A2 = fA2 (H2))
P(A2 | H2; Â)

◊ Y
È

,

I Fair world: expectations wrt to Pú(O)

ÂE[Y (fA)] = 1
Z

ÿ

m,s

E[Y (fA)] ◊ Pú(m | X , s; –m) ◊ Pú(s | X ; –s)
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Data application



Data application: COMPAS

I ProPublica: 2 years worth of COMPAS scores

I Broward county sheri�’s o�ce in Florida

I Total of 5278 individuals scored in 2013 and 2014

I Race: African Americans (60%) and Caucasians (40%)

I Demographics: gender and age

I Criminal record: binary indicator of crime counts > one

I Recidivism: binary indicator

I COMPAS scores
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Task: prediction

Q. Is there any bias in the data wrt race in predicting recidivism?

Unfair mechanisms:
S æ Y S

(Race)
M

(Criminal record)
Y

(Recidivism)

X
(Demographics)
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Task: prediction

Q. Is there any bias in the data wrt race in predicting recidivism?

Unfair mechanisms:
S æ Y S

(Race)
M

(Criminal record)
Y

(Recidivism)

X
(Demographics)

1. Fairness notion �(P)

I �(P) : direct e�ect of S on Y

I Let {Blacks: S = 1} and {Whites: S = 0}

I E[Y (1, M(0))]: risk of recidivism had individuals been Black and everything
else had been as if they were White

I E[Y (0)]: risk of recidivism had individuals been White

I Let �(P) be an odds ratio comparison between
E[Y (1, M(0))] and E[Y (0)]
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Task: prediction

Q. Is there any bias in the data wrt race in predicting recidivism?

Unfair mechanisms:
S æ Y S

(Race)
M

(Criminal record)
Y

(Recidivism)

X
(Demographics)

2. Compute �(P)

I �(P) is identified from P(Y , M, S, X) as follows:

E[Y (1, M(0))] = E
Ë I(S = 0)

P(S = 0)
◊ E[Y | S = 1, X , M]

È

E[Y (0)] = E
Ë
E[Y | S = 0, X , M]

È

I Use BART to fit the outcome model E[Y | S, X , M]

I E[Y (1, M(0))] = 0.47, E[Y (0)] = 0.40

I �(P) = 1.3 (1.01, 1.45) (odds ratio scale)
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Task: prediction

Q. Is there any bias in the data wrt race in predicting recidivism?

Unfair mechanisms:
S æ Y S

(Race)
M

(Criminal record)
Y

(Recidivism)

X
(Demographics)

3. Remove �(P) from �(P) = P(Y = 1 | S, X , M)

�(P) (odds ratio scale, null = 1) Accuracy %
Unfair world P(O) 1.3 (1.01, 1.45) 67.8
Fair world Pú(O) 0.95 Æ �(P) Æ 1.05 66.4

I BART and constrained MCMC to obtain the fair distribution

I Less than 2% relative change in out of sample performance
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Task: decision making

X

S

M

A

Y

I S: race, X : other demographics, M: prior convictions

I A: incarceration (based on risk of recidivism)

I Heuristic utility: Y © (1 ≠ A) ◊ {◊R + (1 ≠ R)} ≠ A
I R: whether or not recidivism occurred in a span of two years

I Negative utility (social, economical costs) associated with incarceration
A = 1.

I Some cost to releasing individuals who go on to reo�end (i.e., for whom
A = 0 and R = 1) controlled by ◊

I Positive utility associated with releasing individuals who do not go on to
recidivate (i.e., for whom A = 0 and R = 0)
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Data application ctd.

Question: What would be the resulting di�erence in pre-trial incarceration rate
under a “fair” vs. unconstrained optimal policy?

Result: “fair” vs. unconstrained policies di�er, and incarceration rates depend
crucially on the utility function.
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Data application ctd.

Figure: Relative expected utilities for policies as function of ◊
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Assessing disparities in cardiac surgical outcomes

I S : race, Y : readmission, bounceback

I Decomposition of e�ects along di�erent causal pathways

S æ SES status æ Y

S æ Access to high-quality cardiac surgeons æ Y

S æ Di�erences in care æ Y
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Assessing disparities in cardiac surgical outcomes
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Concluding remarks



Recall the three methodological questions

1. How to express fairness principles mathematically?

I The approach we take requires substantive ethical input from experts
and/or the public.

I We also require specifying a causal model (based on domain knowledge or
causal structure learning).

I Dealing with unidentified causal e�ects (use of bounds)

2. How to modify statistical procedures to reduce unfair e�ects?

I Constrained MLE (hybrid likelihood)
I Developing more robust constrained optimization methods to use data as

e�ciently as possible

3. How to generalize and deploy these modified algorithms?

I Be mindful of the fact that samples are collected in p and not pú

I Find more e�ective approaches to map instances between p and pú
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Individual vs group-level fairness

I Population level causal parameters, e.g. E[Y (1) ≠ Y (0)] are much easier to
identify, hence much easier to work with population level fairness criteria.

I Individual level criteria, e.g. Yi (1) = Yi (0) are perhaps more desirable, but
much more di�cult to ensure.

I Important note: conditioning on covariates leads to a population level
criterion (non-withstanding causal machine learning terminology).

I In other words, E[Y (1) ≠ Y (0)|X̨ = x̨ ] = 0 reads “the causal e�ect in a
population of people for whom X̨ = x̨ is 0.”

I Whereas, Yi (1) ≠ Yi (0) reads “the causal e�ect for a specific person i (Alice)
is 0.”

I The former is sometimes identified, the latter is almost never identified.
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Race as a predictor

I Should race be used in risk scores or diagnostic tools?
I Recent work argues against (Lesley et al, 2021), (Diao et al, 2021):

I Race is a social, not a biological construct.
I Concerns regarding “algorithmic bias”: laundering in structural unfairness

behind seeming impartiality of algorithms.
I Race identity should be about the patient’s choice, not the investigator’s.

I Arguments for (possibly controversial!):
I True important predictors may be unavailable, and “race” (as coded) may

be the best imperfect proxy.
I Eliminating race as a predictor may reduce overall model performance, even

if many other predictors are introduced (Hsu et al, 2021).
I In some cases, eliminating race doesn’t address the issue: which is unfair

causal pathways.

I My own view: inclusion of race is not a priori bad, nor is exclusion a priori
good. Discussion has to be tied to a specific fairness criterion we wish to
satisfy in a specific application.
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Concluding remarks

I The algorithmic fairness literature is vast, and quickly growing.

I Criteria are often not motivated by use cases.

I Lots of unsurprising negative results (optimality and fairness not jointly
achievable, multiple criteria not jointly achievable).

I Causal criteria often have strong motivations, but come with their own
challenges (identifiability, need for a causal model).

I Ethics debates are very old, and often intractable.

I The purposes of data scientists in making algorithms fair is clarifying and
formalizing legal and political desiderata.

I There is no substitute for a vigorous debate in the public square!.
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