Causal Graphical Methods For Handling Nonignorable Missing Data

Razieh Nabi, Ph.D.
Department of Biostatistics and Bioinformatics Rollins School of Public Health, Emory University
- razieh.nabi@emory.edu
Daniel Scharfstein, Sc.D.
Department of Population Health Sciences
University of Utah School of Medicine
M daniel.scharfstein@hsc.utah.edu

Slides are available at: https://raziehnabi.com/files/acic_miss.pdf (Upon using the materials, please cite appropriately.)

Motivation

- Missing data or missing values occur when no data value is stored for one or multiple variables in an observational unit.
- We are often interested in a functional of an underlying distribution:
- Population-level outcome Y :

$$
\psi_{1}=\mathbb{E}[Y]
$$

- Outcome mean in a sub-population $X=x$:

$$
\psi_{2}=\mathbb{E}[Y \mid X=x]
$$

- Average causal effect of binary treatment T on outcome Y :

$$
\psi_{3}=\mathbb{E}[\mathbb{E}[Y \mid X, T=1]-\mathbb{E}[Y \mid X, T=0]]
$$

(Note that ψ_{3} can only be interpreted as a causal effect under certain assumptions, such as consistency, positivity, and conditional ignorability.)

- The question is how to compute these estimands?
- We need replicates of the underlying distribution, e.g., $\{X, T, Y\} \sim p(X, T, Y)$

Missing data indicators

- We look at the observed sample and it looks like the following:

X^{*}	T^{*}	Y^{*}
x_{1}	t_{1}	$?$
x_{2}	$?$	y_{2}
x_{3}	t_{3}	y_{3}
\vdots	\vdots	\vdots
$?$	t_{n}	$?$

- Each variable with missing values can have an underlying missingness indicator:
- $R_{V}=1$ if variable V is observed and $R_{V}=0$ if V is "?".

X^{*}	T^{*}	Y^{*}	R_{X}	R_{T}	R_{Y}
x_{1}	t_{1}	$?$	1	1	0
x_{2}	$?$	y_{2}	1	0	1
x_{3}	t_{3}	y_{3}	1	1	1
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
$?$	t_{n}	$?$	0	1	0

Missing data challenges

- How can we use a sample with missing values to estimate the parameter of interest?
- Should we ignore rows with missing values?
- Should we impute the missing values? If so, how?
- Should we do something else?
- Our choices may affect our data analysis by
- introducing bias resulting from differences between missing and complete data, and/or
- losing efficiency when we ignore part of the observed sample.
- Before we choose what method to use, we need to know why we have missing data in the first place!

Sources of missingness

We encounter missing data for a variety of reasons:

- A survey was conducted and values were just randomly missed when being entered in the computer.
- A respondent chooses not to respond to a question like "Have you ever recreationally used opioids?"
- You decide to start collecting a new variable (due to new actions: like a pandemic) partway through the data collection of a study.
- You want to measure the speed of meteors, and some observations are just "too quick" to be measured properly.

The source of missing values in data leads to three distinct missingness mechanisms: MCAR, MAR, MNAR (Rubin, 1976).

Rubin's hierarchy of missingness

1. Missing Completely at Random (MCAR) - the probability of missingness in a variable is the same for all units. Like randomly poking holes in a data set.
2. Missing at Random (MAR) - the probability of missingness in a variable depends only on available information (in other predictors).
3. Missing Not at Random (MNAR) - the probability of missingness depends on information that has not been recorded and this information also predicts the missing values.

Rubin's hierarchy of missingness

Let Z : variables with no missingness
X : variables that are sometimes missing

$$
X_{\text {obs }}: \text { observed entries, } X_{\text {miss }} \text { : missing entries }
$$

R : missingness indicators

1. MCAR: $R \Perp X_{\text {miss }}, X_{\text {obs }}, Z, \quad p(R \mid X, Z)=p(R)$.

- probability that any observation is missing is independent of all data values, regardless of whether they are observed or unobserved.

2. MAR: $R \Perp X_{\text {miss }} \mid Z, X_{\text {obs }}, \quad p(R \mid X, Z)=p\left(R \mid Z, X_{\text {obs }}\right)$

- probability that any observation is missing depends only on elements that are observed.

3. MNAR: $R \not \Perp X_{\text {miss }} \quad$ neither marginally nor conditionally

- probability that any observation is missing depends on elements that are themselves missing - a missingness mechanism that is neither MCAR nor MAR.

Beyond the traditional missingness hierarchy

- Rubin's categorization does not determine the best approach for handling missing data in multiple variables.
- How best to handle missing data?
- It depends on the assumed causal relationships between variables and their missingness, and
- What these relationships imply in terms of identification/recoverability of the target estimand.
- Main takeaway: encourage the use of missing data DAGs in data analysis to
- Make underlying assumptions more explicit, and
- Use identification procedures as a guide for estimation methods.

Course outline and objectives

Part I. Missing data DAGs

- Representing missingness mechanisms graphically; transferring expert knowledge into a concise graphical representation; interpret a missing data DAG model as a class of distributions with a set of independence restrictions.

Part II. Non-parametric identification

- Arguing for identifiability of a given estimand: write it down as a function of observed data, or prove it is not identified without making further assumptions.

Part III. Non/Semi-parametric estimation

- Given an identified estimand, derive the class of influence functions; Derive the efficient influence function in a given missing data DAG.

Part IV. Sensitivity analysis

- Assessing deviations from assumptions.

Part 1. Missing Data DAG Models

Missing data and causal inference

- Causal inference and missing data are analogous in terminology, theory of identification, and statistical inference.
- Causal inference has been viewed as a missing data problem:
- Responses to some (hypothetical) treatment interventions are not observed.
- Given the treatment vs placebo option, we only observe the potential outcome under treatment received or the potential outcome under placebo received, but not both.
- Missing data can be viewed as a causal inference problem:
- Missingness indicators can be treated as intervenable treatments.
- We can view variable X as a potential outcome had the missingness indicator R_{X} been set to 1 (had there been no missingness).
- In this part: get inspired by developments in causal graphical models to reason about missing data models.

A causal workflow

1. Define a causal estimand in terms of counterfactuals.
2. Define a causal model that links counterfactuals to factual variables.

- Impose assumptions about the distribution over counterfactual and factual variables.

3. Identify the causal estimand as a function of observed data in the assumed causal model.
4. Define a statistical model to estimate the identified causal estimand.

- Perform statistical inference which includes testing and estimating the magnitude of a causal estimand given the observed data.

5. Assess assumptions with sensitivity analysis.

Example: a causal workflow

1. Average causal effect: $\mathrm{ACE}:=\mathbb{E}\left[Y^{(1)}-Y^{(0)}\right]$

- $Y^{(t)}$: potential outcome Y when binary treatment T is assigned to $t=\{0,1\}$.

2. \mathcal{M} : a causal model relating counterfactuals to factuals

- Consistency: observed outcome Y is equal to the potential outcome $Y^{(t)}$ when the treatment received is $T=t$,
- Positivity: $p(T=t \mid X=x)>0$ for all x in the state space of X,
- Conditional ignorability: $Y^{(t)} \perp T \mid X$

3. Under the above causal model, we can identify ACE via the following functional, known as adjustment formula or g-formula:

$$
\mathbb{E}\left[Y^{(1)}-Y^{(0)}\right]=\mathbb{E}[\mathbb{E}[Y \mid T=1, X]-\mathbb{E}[Y \mid T=0, X]]
$$

4, 5. Luckily, we are not short of any estimation or sensitivity analysis techniques!

Directed acyclic graph (DAG)

- The second step in the causal workflow is what distinguishes causal analyses from traditional statistical analyses.
- Graphical models like directed acyclic graphs (DAGs) are often used to encode assumptions about the causal model.

Directed acyclic graph (DAG)

- The second step in the causal workflow is what distinguishes causal analyses from traditional statistical analyses.
- Graphical models like directed acyclic graphs (DAGs) are often used to encode assumptions about the causal model.
- A graph $\mathcal{G}(V, E)$ is a set of vertices/nodes V that correspond to random variables and a set E that contains the set of edges between variables.
- The graph $\mathcal{G}(V, E)$ is said to be directed and acyclic if:
- There are only directed edges ($V_{i} \rightarrow V_{j}$)
- There are no directed cycles - for any $V_{i} \in V$ there is no sequence of directed edges in \mathcal{G} such that $V_{i} \rightarrow \ldots \rightarrow V_{i}$

x
- For notational convenience, we often refer to $\mathcal{G}(V, E)$ as $\mathcal{G}(V)$ or simply \mathcal{G}.

Statistical model of a DAG

- DAG $\mathcal{G}(V)$ encodes a set of independence restrictions on the joint distribution $p(V)$.
- The joint distribution $p(V)$ corresponding to DAG $\mathcal{G}(V)$ has three equivalent characterizations:
- Factorization (writes the distribution as a set of small factors.)
- Local Markov property (lists a complete set of independence constraints.)
- Global Markov property (lists all independence constraints in the model.)

Statistical model of a DAG ctd.

The joint distribution $p(V)$ satisfies the factorization property wrt DAG $\mathcal{G}(V)$ if:

$$
p(V)=\prod_{V_{i} \in V} p\left(V_{i} \mid \operatorname{pa}_{\mathcal{G}}\left(V_{i}\right)\right),
$$

- $\operatorname{pa}_{\mathcal{G}}\left(V_{i}\right)=\left\{V_{j} \in V \mid V_{j} \rightarrow V_{i}\right\}$ denotes parents of V_{i} in $\mathcal{G}(V)$.

Statistical model of a DAG ctd.

The joint distribution $p(V)$ satisfies the factorization property wrt DAG $\mathcal{G}(V)$ if:

$$
p(V)=\prod_{V_{i} \in V} p\left(V_{i} \mid \mathrm{pa}_{\mathcal{G}}\left(V_{i}\right)\right)
$$

- $\mathrm{pa}_{\mathcal{G}}\left(V_{i}\right)=\left\{V_{j} \in V \mid V_{j} \rightarrow V_{i}\right\}$ denotes parents of V_{i} in $\mathcal{G}(V)$.

The joint distribution $p(V)$ satisfies the local Markov property wrt DAG $\mathcal{G}(V)$ if:

$$
V_{i} \Perp \mathrm{nd}_{\mathcal{G}}\left(V_{i}\right) \backslash \mathrm{pa}_{\mathcal{G}}\left(V_{i}\right) \mid \mathrm{pa}_{\mathcal{G}}\left(V_{i}\right), \quad \forall V_{i} \in V
$$

(variable V_{i} is independent of its non-descendants non-parents given its parents)

- $\mathrm{nd}_{\mathcal{G}}\left(V_{i}\right)=\left\{V_{j} \in V \mid V_{j} \notin \mathrm{de}_{\mathcal{G}}\left(V_{i}\right)\right\}$ denotes non-descendants of V_{i} in $\mathcal{G}(V)$,
- $\operatorname{de}_{\mathcal{G}}\left(V_{i}\right)=\left\{V_{j} \in V \mid V_{i} \rightarrow \ldots \rightarrow V_{j}\right\}$ denotes descendants of V_{i} in $\mathcal{G}(V)$.

Example: statistical model of a DAG

Consider the following DAG:

- According to the DAG factorization, the statistical model of this DAG is a set of distributions $p(V)$, where $V=\left\{V_{1}, V_{2}, V_{3}, V_{4}\right\}$ s.t.,

$$
\left\{p(V)=p\left(V_{1}\right) \times p\left(V_{2}\right) \times p\left(V_{3} \mid V_{1}, V_{2}\right) \times p\left(V_{4} \mid V_{3}\right)\right\}
$$

- According to the local Markov property, the statistical model of this DAG is a set of distributions $p(V)$ s.t.,

$$
\left\{p(V) \text { s.t. } \quad V_{1} \Perp V_{2} \text { and } V_{4} \Perp V_{1}, V_{2} \mid V_{3}\right\} .
$$

The above list implies a larger set of independence restrictions, e.g., $V_{4} \Perp V_{1} \mid V_{3}$ or $V_{4} \Perp V_{1} \mid V_{2}, V_{3}$. (graphoid axioms)

Global Markov property: d-separation

- Given a DAG $\mathcal{G}(V)$, we need to be able to answer arbitrary independence queries of the form $X \Perp Y \mid Z$ in $p(V)$, where X, Y, Z are disjoint subsets of V.
- d-separation (directed-separation) is a graphical criterion that allows one to answer such queries in an automated fashion (Pearl, 2000; Verma and Pearl, 1990).
- Here are the three types of triplets that define d-separation:
- Forks $X \leftarrow Z \rightarrow Y$
- Chains $X \rightarrow Z \rightarrow Y$ or $X \leftarrow Z \leftarrow Y$
- Colliders $X \rightarrow Z \leftarrow Y$

Fork triplets

In a fork $X \leftarrow Z \rightarrow Y$, the variables X and Y are marginally dependent, but conditionally independent given Z.

$X \not \Perp Y$

$$
X \Perp Y \mid Z
$$

- Intuition: X and Y share a common cause and thus dependent.
- Upon observing the common cause Z, the two effects X and Y are no longer related.
- Example: warmer weather draw more people to the beach and also drive up ice cream sales.
- X : shark attacks, Z : warm whether, and Y : ice cream sales.

Chain triplets

In a chain $X \rightarrow Z \rightarrow Y$, the variables X and Y are marginally dependent, but conditionally independent given Z.

$$
X \longrightarrow Z \longrightarrow Y
$$

$$
X \not \Perp Y
$$

$$
X \Perp Y \mid Z
$$

- Intuition: if Z is a noisy version of X and Y is a noisy version of Z, then Y is a noisy version of X.
- Z screens off the effect of X on Y.
- Upon observing Z, X holds no extra information about Y.
- Example: blood sugar causes hunger, but only indirectly through increasing the stomach acidity.
- X : blood sugar, Z : stomach acidity, and Y : hunger.

Collider triplets

In a collider $X \rightarrow Z \leftarrow Y$, the variables X and Y are marginally independent, but conditionally dependent given Z.

$$
X \Perp Y
$$

$X \not \Perp Y \mid Z$

- Intuition: if X and Y only share a common effect, they are independent. That is the common effect has two independent sources of causes.
- Upon observing the common effect, the two causes become dependent.
- This is often referred to as a Berkson's paradox.
- Example: if we observe that the car fails to start, then knowing something about the fuel status tells us something about the battery status \& vice versa
- X : battery, Z : car starts, and Y : fuel.
- Conditioning can induce dependence, not just remove the dependence.

Collider extensions

In a colider $X \rightarrow Z \leftarrow Y$, the variables X and Y are marginally independent, but conditionally dependent given a descendant of Z.

$X \Perp Y$

- Example: extend the previous example where the car was taken to a mechanic.
- X : battery, Z : car starts, Y : fuel, and D : taken to mechanic

Summary of the (in)dependence rules

- Forks/chains are open, but become blocked upon conditioning.
- Colliders are blocked, but become open upon conditioning.

From blocked triplets to d-separation

- A path from X to Y is a sequence of consecutive edges connecting X and Y such that no vertex (and consequently no edge) appears more than once in the sequence.
- A path from X to Y is blocked by Z if there is a blocking triplet on the path.
- There exists a blocked chain or fork on the path, or
- A collider that is not open.
- Dependence is like water flow and paths are pipes. A single block is enough to block the whole path.
- X and Y are \mathbf{d}-separated given Z if all paths from X to Y are blocked by Z, and is denoted by $X \Perp_{d} Y \mid Z$.

Examples: d-separation

- Is $A \Perp_{d} E \mid C$?

Examples: d-separation

- Is $A \Perp_{d} E \mid C$?

No! because $A \rightarrow B \rightarrow D \rightarrow E$ is still open.

Examples: d-separation

- Is $A \Perp_{d} E \mid C$?

No! because $A \rightarrow B \rightarrow D \rightarrow E$ is still open.

- Is $B \Perp_{d} C \mid A$?

Examples: d-separation

- Is $A \Perp_{d} E \mid C$?

No! because $A \rightarrow B \rightarrow D \rightarrow E$ is still open.

- Is $B \Perp_{d} C \mid A$?

Yes! $B \leftarrow A \rightarrow C$ and $B \rightarrow D \leftarrow C$ are both blocked.

Examples: d-separation

- Is $A \Perp_{d} E \mid C$?

No! because $A \rightarrow B \rightarrow D \rightarrow E$ is still open.

- Is $B \Perp_{d} C \mid A$?

Yes! $B \leftarrow A \rightarrow C$ and $B \rightarrow D \leftarrow C$ are both blocked.

- Is $B \Perp_{d} C \mid E, A$?

Examples: d-separation

- Is $A \Perp_{d} E \mid C$?

No! because $A \rightarrow B \rightarrow D \rightarrow E$ is still open.

- Is $B \Perp_{d} C \mid A$?

Yes! $B \leftarrow A \rightarrow C$ and $B \rightarrow D \leftarrow C$ are both blocked.

- Is $B \Perp_{d} C \mid E, A$?

No! $B \rightarrow D \leftarrow C$ is now open (condition on E opens up the collider at D).

Global Markov property

For any distribution $p(V)$ that satisfies the DAG factorization wrt $\mathcal{G}(V)$, the following Global Markov property holds: for all disjoint subsets X, Y, Z of V we have,

$$
\left.\left.\left(X \Perp_{d} Y \mid Z\right)\right|_{\mathcal{G}(V)} \Longrightarrow(X \Perp Y \mid Z)\right|_{p(V)}
$$

where $\left.\left(\Perp_{d}\right)\right|_{\mathcal{G}}$ denotes d-separation in \mathcal{G} and $\left.(\Perp)\right|_{p}$ denotes independence in p.

- We can apply a purely graphical criterion to a DAG $\mathcal{G}(V)$ to tell us about conditional independence facts in the joint distribution $p(V)$.
- The above is a one way implication!
- We could indeed have extra independence restrictions in $p(V)$ that we cannot read them by d-separation (and that happens in unfaithful distributions).

Equivalence of DAG properties

The statistical model of a DAG is characterized with three definitions:

- Factorization (writes the distribution as a set of small factors).
- Local Markov property (lists a small but complete set of independence constraints).
- Global Markov property (lists all independence constraints in the model).

A distribution $p(V)$ factorizes according to a DAG $\mathcal{G}(V)$ if and only if it obeys the local Markov property according to $\mathcal{G}(V)$ if and only if it obeys the global Markov property according to $\mathcal{G}(V)$ (Verma and Pearl, 1990).

DAG factorization \Longleftrightarrow Local Markov property \Longleftrightarrow Global Markov property

Causal model of a DAG

- The causal model of a DAG can be formally defined in terms of Nonparametric Structural Equations Model (NPSEM).
- It describes how "nature" assigns values to each variable in the model.
- For every $V_{i} \in V$:

$$
V_{i} \leftarrow f_{V_{i}}\left(\operatorname{pa}_{\mathcal{G}}\left(V_{i}\right), \epsilon V_{i}\right)
$$

- $\epsilon_{V_{i}}$ denotes the error term (all external unmeasured causes of V_{i}).
- $f_{V_{i}}$ is nonparametric. It does not constrain the dependence of V_{i} on its parents and $\epsilon_{V_{i}}$ in any way.
- This is an imperative assignment, not an equality! which means the model is not "reversible."

Causal model of a DAG

- The causal model of a DAG can be formally defined in terms of Nonparametric Structural Equations Model (NPSEM).
- It describes how "nature" assigns values to each variable in the model.
- For every $V_{i} \in V$:

$$
V_{i} \leftarrow f_{V_{i}}\left(\operatorname{pa}_{\mathcal{G}}\left(V_{i}\right), \epsilon V_{i}\right)
$$

- $\epsilon_{V_{i}}$ denotes the error term (all external unmeasured causes of V_{i}).
- $f_{V_{i}}$ is nonparametric. It does not constrain the dependence of V_{i} on its parents and $\epsilon_{V_{i}}$ in any way.
- This is an imperative assignment, not an equality! which means the model is not "reversible."
- Unmeasured factors are typically assumed to be independent - a reflection of the fact that all unmeasured common causes have been measured.
- This is known as the NPSEM with independent errors (NPSEM-IE)
- The explicit assumption is that $\Perp\left\{\epsilon V_{i}, \forall V_{i} \in V\right\}$, and thus $p(\epsilon)=\prod_{V_{i} \in V} p\left(\epsilon_{V_{i}}\right)$

Intervention in causal models

- Let T be the variable that we would like to (hypothetically) intervene on and set it to t.
- An intervention that sets $T=t$ entails the following three changes:
I. Structural changes to the causal model
- In the corresponding NPSEM, replace $T \leftarrow f_{T}\left(\operatorname{pa}_{\mathcal{G}}(T), \epsilon_{T}\right)$ with $T \leftarrow t$.
- The structural equations for other variables may change depending on their genealogical relations to T.
II. Graphical changes to the DAG
- In the corresponding DAG $\mathcal{G}(V)$, delete all incoming edges into T and fix the T node to take value t.
- The vertices on the downstream of T turn into counterfactuals.
III. Probabilistical changes to the joint distribution
- In the corresponding joint distirbution $p(V)$, drop the factor $p\left(T \mid \mathrm{pa}_{\mathcal{G}}(T)\right)$ from the factorization of $p(V)$, and evaluate all other factors at $T=t$.
- Upon the intervention, we end up with a truncated factorization.

Example: intervention in causal models

- Let T be the treatment of interest in the following DAG:

Example: intervention in causal models

- Let T be the treatment of interest in the following DAG:

- Structural operation of intervening on T and setting it to t :

$$
\begin{aligned}
X & \leftarrow f_{X}\left(\epsilon_{X}\right) \\
T & \leftarrow f_{T}\left(X, \epsilon_{T}\right) \\
Y & \leftarrow f_{Y}\left(X, T, \epsilon_{Y}\right)
\end{aligned}
$$

$$
\begin{aligned}
& X \leftarrow f_{X}\left(\epsilon_{X}\right) \\
& T \leftarrow t \\
& Y^{(t)} \leftarrow f_{Y}\left(X, t, \epsilon_{Y}\right)
\end{aligned}
$$

NPSEM-IE implies the conditional ignorability assumption: $Y^{(t)} \Perp T \mid X$.

Example: intervention in causal models

- Let T be the treatment of interest in the following DAG:

- Structural operation of intervening on T and setting it to t :

$$
\begin{aligned}
& X \leftarrow f_{X}\left(\epsilon_{X}\right) \\
& T \leftarrow f_{T}\left(X, \epsilon_{T}\right) \\
& Y \leftarrow f_{Y}\left(X, T, \epsilon_{Y}\right)
\end{aligned}
$$

$$
\begin{aligned}
X & \leftarrow f_{X}\left(\epsilon_{X}\right) \\
T & \leftarrow t \\
Y^{(t)} & \leftarrow f_{Y}\left(X, t, \epsilon_{Y}\right)
\end{aligned}
$$

NPSEM-IE implies the conditional ignorability assumption: $Y^{(t)} \Perp T \mid X$.

- Graphical operation of this intervention is illustrated as follows:

Example: intervention in causal models

- Let T be the treatment of interest in the following DAG:

- Structural operation of intervening on T and setting it to t :

$$
\begin{aligned}
& X \leftarrow f_{X}\left(\epsilon_{X}\right) \\
& T \leftarrow f_{T}\left(X, \epsilon_{T}\right) \\
& Y \leftarrow f_{Y}\left(X, T, \epsilon_{Y}\right)
\end{aligned}
$$

$$
\begin{aligned}
& X \leftarrow f_{X}\left(\epsilon_{X}\right) \\
& T \leftarrow t \\
& Y^{(t)} \leftarrow f_{Y}\left(X, t, \epsilon_{Y}\right)
\end{aligned}
$$

NPSEM-IE implies the conditional ignorability assumption: $Y^{(t)} \Perp T \mid X$.

- Graphical operation of this intervention is illustrated as follows:

- Probabilistic operation of this intervention is a truncated factorization:

$$
p\left(X, Y^{(t)}\right)=\left.\frac{p(X, Y, T)}{p(T \mid X)}\right|_{T=t}=\frac{p(X, Y, T=t)}{p(T=t \mid X)}=p(X) p(Y \mid T=t, X)
$$

Example: intervention in causal models

- Let T be the treatment of interest in the following DAG:

- Structural operation of intervening on T and setting it to t :

$$
\begin{aligned}
& X \leftarrow f_{X}\left(\epsilon_{X}\right) \\
& T \leftarrow f_{T}\left(X, \epsilon_{T}\right) \\
& Y \leftarrow f_{Y}\left(X, T, \epsilon_{Y}\right)
\end{aligned}
$$

$$
\begin{aligned}
& X \leftarrow f_{X}\left(\epsilon_{X}\right) \\
& T \leftarrow t \\
& Y^{(t)} \leftarrow f_{Y}\left(X, t, \epsilon_{Y}\right)
\end{aligned}
$$

NPSEM-IE implies the conditional ignorability assumption: $Y^{(t)} \Perp T \mid X$.

- Graphical operation of this intervention is illustrated as follows:

- Probabilistic operation of this intervention is a truncated factorization:

$$
p\left(X, Y^{(t)}\right)=\left.\frac{p(X, Y, T)}{p(T \mid X)}\right|_{T=t}=\frac{p(X, Y, T=t)}{p(T=t \mid X)}=p(X) p(Y \mid T=t, X)
$$

Do-calculus notation of Pearl: $p\left(X, Y^{(t)}\right) \equiv p(X, Y \mid \operatorname{do}(T=t))$.

Missing data notation

- $X=\left(X_{1}, \ldots, X_{K}\right)^{T}$: a vector of K random variables
- Given a finite sample from $p(X)$:
- $R=\left(R_{1}, \ldots, R_{K}\right)^{T}$: binary missingness indicators
$R_{k}=1$ if X_{k} is observed, and $R_{k}=0$ otherwise
- $X^{*}=\left(X_{1}^{*}, \ldots, X_{K}^{*}\right)^{T}$: coarsened version of X
$X_{k}^{*}=X_{k}$ if $R_{k}=1$, and $X_{k}^{*}=$? otherwise

Missing data notation

- $X=\left(X_{1}, \ldots, X_{K}\right)^{T}$: a vector of K random variables
- Given a finite sample from $p(X)$:
- $R=\left(R_{1}, \ldots, R_{K}\right)^{T}$: binary missingness indicators
$R_{k}=1$ if X_{k} is observed, and $R_{k}=0$ otherwise
- $X^{*}=\left(X_{1}^{*}, \ldots, X_{K}^{*}\right)^{T}$: coarsened version of X

$$
X_{k}^{*}=X_{k} \text { if } R_{k}=1, \text { and } X_{k}^{*}=? \text { otherwise }
$$

- Causal interpretation of the tuple $\left(X_{k}, R_{k}, X_{k}^{*}\right)$:
- R_{k} : a treatment variable that can be intervened on
- X_{k} : a counterfactual - had we intervened and set $R_{k}=1$
- X_{k}^{*} : a factual variable

Missing data notation

- $X=\left(X_{1}, \ldots, X_{K}\right)^{T}$: a vector of K random variables
- Given a finite sample from $p(X)$:
- $R=\left(R_{1}, \ldots, R_{K}\right)^{T}$: binary missingness indicators
$R_{k}=1$ if X_{k} is observed, and $R_{k}=0$ otherwise
- $X^{*}=\left(X_{1}^{*}, \ldots, X_{K}^{*}\right)^{T}$: coarsened version of X

$$
X_{k}^{*}=X_{k} \text { if } R_{k}=1, \text { and } X_{k}^{*}=? \text { otherwise }
$$

- Causal interpretation of the tuple $\left(X_{k}, R_{k}, X_{k}^{*}\right)$:
- R_{k} : a treatment variable that can be intervened on
- X_{k} : a counterfactual - had we intervened and set $R_{k}=1$
- X_{k}^{*} : a factual variable
- Switching notation to emphasize the counterfactual connotation:

$$
X, R, X^{*} \mapsto L^{(1)}, R, L
$$

$L^{(1)}=\left(L_{1}^{(1)}, \ldots, L_{K}^{(1)}\right)^{T}$ and $L=\left(L_{1}, \ldots, L_{K}\right)^{T}$.

Missing data notation

- $X=\left(X_{1}, \ldots, X_{K}\right)^{T}$: a vector of K random variables
- Given a finite sample from $p(X)$:
- $R=\left(R_{1}, \ldots, R_{K}\right)^{T}$: binary missingness indicators
$R_{k}=1$ if X_{k} is observed, and $R_{k}=0$ otherwise
- $X^{*}=\left(X_{1}^{*}, \ldots, X_{K}^{*}\right)^{T}$: coarsened version of X

$$
X_{k}^{*}=X_{k} \text { if } R_{k}=1, \text { and } X_{k}^{*}=? \text { otherwise }
$$

- Causal interpretation of the tuple $\left(X_{k}, R_{k}, X_{k}^{*}\right)$:
- R_{k} : a treatment variable that can be intervened on
- X_{k} : a counterfactual - had we intervened and set $R_{k}=1$
- X_{k}^{*} : a factual variable
- Switching notation to emphasize the counterfactual connotation:

$$
X, R, X^{*} \mapsto L^{(1)}, R, L
$$

$$
L^{(1)}=\left(L_{1}^{(1)}, \ldots, L_{K}^{(1)}\right)^{T} \text { and } L=\left(L_{1}, \ldots, L_{K}\right)^{T}
$$

- Z: completely observed variables

Missing data models

- A missing data model \mathcal{M} is a set of distributions defined over variables in $\left\{Z, L^{(1)}, R, L\right\}$.
- By chain rule of probability, we can factorize $p\left(Z, L^{(1)}, R, L\right)$ as follows:

Missing data models

- A missing data model \mathcal{M} is a set of distributions defined over variables in $\left\{Z, L^{(1)}, R, L\right\}$.
- By chain rule of probability, we can factorize $p\left(Z, L^{(1)}, R, L\right)$ as follows:

- Consistency assumption: $L_{k}= \begin{cases}L_{k}^{(1)} & \text { if } R_{k}=1 \\ ? & \text { if } R_{k}=0\end{cases}$
- Observed data law is $p(Z, R, L)$, where counterfactuals are marginalized out.

A missing data workflow

1. Define the estimand (often done in the absence of missing data).

- A function of target law $p\left(Z, L^{(1)}\right)$ or full law $p\left(Z, L^{(1)}, R\right)$.

2. Assume a model that links the counterfactual, factual, and missingness indicator variables.

- Use Directed Acyclic Graphs (DAGs) to encode the modeling assumptions.

3. Determine whether the estimand is identifiable in the assumed model.

- Focus on identification of the target and full laws.

4. If estimand is identifiable, find the best estimation strategy, and if it is not, perhaps stronger assumptions are needed (or alternatively obtaining bounds).
5. Conduct sensitivity analysis to reflect on the assumptions.

Introducing missing data DAGs

- Define missing data models via restrictions on the full data distribution that can be represented by a DAG (similar to causal inference).
- In missing data DAGs: (Mohan et al., 2013)

1. Observed and counterfactual variables appear on the same graph
2. There are certain edge restrictions: (marked in red)

deterministic edges

"no interference"

- The "no interference" assumption can be relaxed (Srinivasan et al., 2023).

Examples: missing data DAGs

Examples: missing data DAGs

MNAR: permutation
(Robins, 1997)

MNAR: block-conditional
(Zhou et al., 2010)

MNAR: block-parallel
(Mohan et al., 2013)

Examples: missing data DAGs ctd.

How do models differ in telling a story about the missingness mechanisms?

- $L_{1}^{(1)}$: true smoking status of an individual.
- $L_{2}^{(1)}$: diagnosis of bronchitis.
- R_{1}, R_{2} : encode whether these variables have been measured or not.

Examples: missing data DAGs ctd.

How do models differ in telling a story about the missingness mechanisms?

- $L_{1}^{(1)}$: true smoking status of an individual.
- $L_{2}^{(1)}$: diagnosis of bronchitis.
- R_{1}, R_{2} : encode whether these variables have been measured or not.
$-L_{2}^{(1)} \rightarrow R_{1}$
A doctor inquires about the patient's smoking status on a suspected diagnosis of bronchitis before administering the test.
$-R_{1} \rightarrow R_{2} \leftarrow L_{1}$
Whether the true bronchitis status is measured via a diagnostic test depends on the doctor's awareness of the individual's smoking status (R_{1}) and their observed value of smoking (L_{1}).

MNAR: permutation
(Robins, 1997)

Examples: missing data DAGs ctd.

How do models differ in telling a story about the missingness mechanisms?

- $L_{1}^{(1)}$: true smoking status of an individual.
- $L_{2}^{(1)}:$ diagnosis of bronchitis.
- R_{1}, R_{2} : encode whether these variables have been measured or not.
- R_{1} has no parent Inquiry into smoking status is random (e.g., as in random screening programs or surveys).
- $R_{1} \rightarrow R_{2} \leftarrow L_{1}^{(1)}$

Administration of a diagnostic test depends on the inquiry into smoking, as well as the potentially unobserved past history of smoking.

Examples: missing data DAGs ctd.

How do models differ in telling a story about the missingness mechanisms?

- $L_{1}^{(1)}$: true smoking status of an individual.
- $L_{2}^{(1)}$: diagnosis of bronchitis.
- R_{1}, R_{2} : encode whether these variables have been measured or not.
$-R_{1} \leftarrow L_{2}^{(1)}$
Inquiry into smoking status depends on a suspected diagnosis of bronchitis.
- $R_{2} \leftarrow L_{1}^{(1)}$

Administration of the diagnostic test depends on the suspected smoking status of an individual.

MNAR: block-parallel
(Mohan et al., 2013)

Missing data DAG models

- Denote the missing data DAG (m-DAG) defined over $V=\left(Z, L^{(1)}, R, L\right)$ via $\mathcal{G}(V)$.
- The statistical model of m-DAG $\mathcal{G}(V)$ is a set of distributions that factorize as:

$$
\begin{aligned}
p\left(Z, L^{(1)}, R, L\right) & =\prod_{V_{i} \in V} p\left(V_{i} \mid \mathrm{pa}_{\mathcal{G}}\left(V_{i}\right)\right) \\
& =\prod_{V_{i} \in V \backslash L} p\left(V_{i} \mid \mathrm{pa}_{\mathcal{G}}\left(V_{i}\right)\right) \times \prod_{L_{i} \in L} p\left(L_{i} \mid L_{i}^{(1)}, R_{i}\right) .
\end{aligned}
$$

Missing data DAG models

- Denote the missing data DAG (m-DAG) defined over $V=\left(Z, L^{(1)}, R, L\right)$ via $\mathcal{G}(V)$.
- The statistical model of m-DAG $\mathcal{G}(V)$ is a set of distributions that factorize as:

$$
\begin{aligned}
p\left(Z, L^{(1)}, R, L\right) & =\prod_{V_{i} \in V} p\left(V_{i} \mid \mathrm{pa}_{\mathcal{G}}\left(V_{i}\right)\right) \\
& =\prod_{V_{i} \in V \backslash L} p\left(V_{i} \mid \mathrm{pa}_{\mathcal{G}}\left(V_{i}\right)\right) \times \prod_{L_{i} \in L} p\left(L_{i} \mid L_{i}^{(1)}, R_{i}\right) .
\end{aligned}
$$

- Familiar concepts like d-separation and Markov properties carry over.
- Factorization: probability distribution as a set of small factors.
- Local Markov property: a small but complete set of indep constraints.

$$
V_{i} \Perp \mathrm{nd}_{\mathcal{G}}\left(V_{i}\right) \backslash \mathrm{pa}_{\mathcal{G}}\left(V_{i}\right) \mid \mathrm{pa}_{\mathcal{G}}\left(V_{i}\right), \forall V_{i} \in V
$$

- Global Markov property: all independence constraints in the model.

$$
\text { Given } X, Y, Z \in V: \quad\left(X \Perp_{\text {d-sep }} Y \mid Z\right)_{\mathcal{G}(V)} \Longrightarrow(X \Perp Y \mid Z)_{p(V)}
$$

- All three properties are equivalent.

d-separation refresher

$$
\begin{gathered}
R_{1} \Perp L_{1}^{(1)} \\
R_{1} \not \Perp L_{1}^{(1)} \mid R_{2}
\end{gathered}
$$

Examples: m-DAG models

MAR

$$
R \Perp L^{(1)} \mid Z
$$

$$
\begin{gathered}
R_{1} \Perp L_{1}^{(1)} \mid L_{2}^{(1)} \\
R_{2} \Perp L_{1}^{(1)}, L_{2}^{(1)} \mid R_{1}, L_{1}
\end{gathered}
$$

Permutation (Robins, 1997)

Block-conditional (Zhou et al., 2010)

Block-parallel (Mohan et al., 2013)

Graphical representations of MCAR, MAR, MNAR mechanisms

Missingness mechanism, $p\left(R \mid \operatorname{pa}_{\mathcal{G}}(R)\right)=\prod_{R_{k} \in R} p\left(R_{k} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{k}\right)\right)$, is

- MCAR: if $p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right), \forall R_{k} \in R$, is not a function of variables in $\left\{L^{(1)}, L, Z\right\}$.
- Graphically speaking, there are no edges that point to variables in R.
- MAR: if $p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right), \forall R_{k} \in R$, is not a function of variables in $L^{(1)}$, but could be a function of variables in $\{Z, L\}$.
- Graphically speaking, there are no edges from variables in $L^{(1)}$ to variables in R.
- MNAR otherwise.

Part 2. Nonparametric Identification

Identification in missing data models

- Let $\psi:=\mathbb{E}\left[h\left(p\left(Z, L^{(1)}\right)\right)\right]$ denote the parameter (estimand) of interest.
- Let the full law $p\left(Z, L^{(1)}, R\right)$ be Markov relative to the m-DAG $\mathcal{G}(V)$.
- To do inference on ψ, we first need to argue whether ψ is identified as a function of the observed data law in the assumed m-DAG or not?

Identification in missing data models

- Let $\psi:=\mathbb{E}\left[h\left(p\left(Z, L^{(1)}\right)\right)\right]$ denote the parameter (estimand) of interest.
- Let the full law $p\left(Z, L^{(1)}, R\right)$ be Markov relative to the m-DAG $\mathcal{G}(V)$.
- To do inference on ψ, we first need to argue whether ψ is identified as a function of the observed data law in the assumed m-DAG or not?
- The estimand ψ is identified in the assumed m-DAG \mathcal{G}, if it can be expressed as a unique function of the observed data law $p(Z, L, R)$. This means:
- A parameter is identified under a particular collection of assumptions if these assumptions imply that the distribution of the observed data is compatible with a single value of the parameter.
- If there exists no unique mapping between the counterfactual distribution and the observed data law, then the parameter is not identified.
- Instead of ψ, we might be interested in identification of the entire target law $p\left(Z, L^{(1)}\right)$ or the entire full law $p\left(Z, L^{(1)}, R\right)$.

Example: simple identification arguments

Is the target law $p\left(Z, L^{(1)}\right)$ identified as a function of the observed data law $p(Z, R, L)$?

- Under MCAR missingness, target law is identified:

$$
\begin{array}{rlr}
p\left(Z, L^{(1)}\right) & =p\left(Z, L^{(1)} \mid R=1\right) \quad R \Perp Z, L^{(1)} \\
& =p(Z, L \mid R=1) . \quad \text { consistency }
\end{array}
$$

- Under MAR missingness, target law is identified:

$$
\begin{aligned}
p\left(Z, L^{(1)}\right) & =p(Z) \times p\left(L^{(1)} \mid Z\right) \\
& =p(Z) \times p\left(L^{(1)} \mid Z, R=1\right) \quad R \Perp L^{(1)} \mid Z \\
& =p(Z) \times p(L \mid Z, R=1) . \quad \text { consistency }
\end{aligned}
$$

- MNAR model:

$$
p\left(Z, L^{(1)}\right)=? ? ?
$$

MNAR models \equiv causal models with unmeasured confounding

- Sometimes we succeed and sometimes we fail to identify MNAR models!

Nonparametric identification theory in causal inference

- Identification questions in causal inference: given an arbitrary DAG with hidden/unmeasured variables, is $p\left(Y^{(t)}\right)$ identified?
- Sound and complete algorithms exist for causal effect identification.
- Soundness: functionals of identified effects are correct.
- Completeness: no-identifiability of the causal effect is provable. (Shpitser and Pearl, 2006; Huang and Valtorta, 2006; Richardson et al., 2017; Bhattacharya et al., 2022)

Nonparametric identification theory in causal inference

- Identification questions in causal inference: given an arbitrary DAG with hidden/unmeasured variables, is $p\left(Y^{(t)}\right)$ identified?
- Sound and complete algorithms exist for causal effect identification.
- Soundness: functionals of identified effects are correct.
- Completeness: no-identifiability of the causal effect is provable. (Shpitser and Pearl, 2006; Huang and Valtorta, 2006; Richardson et al., 2017; Bhattacharya et al., 2022)
- Similarly, given that assumptions/restrictions in a missing data model are encoded via a m-DAG, we would like to know whether the underlying full/target law is identified or not.
- Causal identification theory is incomplete for missing data identification!
- There are indeed identified MNAR models for which causal identification theory fails.

Incompleteness of causal identification theory for m-DAGs

- Causal identification theory is incomplete for missing data identification.

Block-parallel

Permutation

Observed margin

One-line ID (Richardson et al., 2017)

- $Y^{*}=\left\{L_{1}, L_{2}\right\}$
- $G_{Y^{*}}=L_{1} \leftrightarrow L_{2}$
- District: $\left\{L_{1}, L_{2}\right\}$
- Need to fix R_{1}, R_{2} and fail.

Observed margin

One-line ID (Richardson et al., 2017)

- $Y^{*}=\left\{L_{1}, L_{2}\right\}$
- $G_{Y^{*}}=L_{1} \leftrightarrow L_{2}$
- District: $\left\{L_{1}, L_{2}\right\}$
- Need to fix R_{1}, R_{2} and fail.

Nonparametric identification in m-DAGs

- The target law is identified if and only if the missingness mechanism $p\left(R=1 \mid L^{(1)}, Z\right)$ is identified. Using Bayes rule:

$$
p\left(R=1 \mid L^{(1)}, Z\right)=\frac{p\left(Z, L^{(1)}, R=1\right)}{p\left(L^{(1)}, Z\right)} \quad \rightarrow p\left(Z, L^{(1)}\right)=\frac{p\left(Z, L^{(1)}, R=1\right)}{p\left(R=1 \mid Z, L^{(1)}\right)} .
$$

Nonparametric identification in m-DAGs

- The target law is identified if and only if the missingness mechanism $p\left(R=1 \mid L^{(1)}, Z\right)$ is identified. Using Bayes rule:

$$
p\left(R=1 \mid L^{(1)}, Z\right)=\frac{p\left(Z, L^{(1)}, R=1\right)}{p\left(L^{(1)}, Z\right)} \quad \rightarrow p\left(Z, L^{(1)}\right)=\frac{p\left(Z, L^{(1)}, R=1\right)}{p\left(R=1 \mid Z, L^{(1)}\right)} .
$$

- The full law is identified if and only if the missingness mechanism $p\left(R=r \mid L^{(1)}, Z\right)$ is identified, for all possible missingness pattern $R=r$. Using chain rule:

$$
\begin{aligned}
p\left(Z, L^{(1)}, R=r\right) & =p\left(Z, L^{(1)}\right) \times p\left(R=r \mid L^{(1)}, Z\right) \\
& =\frac{p\left(Z, L^{(1)}, R=1\right)}{p\left(R=1 \mid L^{(1)}, Z\right)} \times p\left(R=r \mid L^{(1)}, Z\right)
\end{aligned}
$$

Nonparametric identification in m-DAGs

- The target law is identified if and only if the missingness mechanism $p\left(R=1 \mid L^{(1)}, Z\right)$ is identified. Using Bayes rule:

$$
p\left(R=1 \mid L^{(1)}, Z\right)=\frac{p\left(Z, L^{(1)}, R=1\right)}{p\left(L^{(1)}, Z\right)} \quad \rightarrow p\left(Z, L^{(1)}\right)=\frac{p\left(Z, L^{(1)}, R=1\right)}{p\left(R=1 \mid Z, L^{(1)}\right)} .
$$

- The full law is identified if and only if the missingness mechanism $p\left(R=r \mid L^{(1)}, Z\right)$ is identified, for all possible missingness pattern $R=r$. Using chain rule:

$$
\begin{aligned}
p\left(Z, L^{(1)}, R=r\right) & =p\left(Z, L^{(1)}\right) \times p\left(R=r \mid L^{(1)}, Z\right) \\
& =\frac{p\left(Z, L^{(1)}, R=1\right)}{p\left(R=1 \mid L^{(1)}, Z\right)} \times p\left(R=r \mid L^{(1)}, Z\right)
\end{aligned}
$$

- Game plan: focus on identification of the missingness mechanism $p\left(R \mid L^{(1)}, Z\right)$ in a given m-DAG.

Np-identification of missingness mechanisms in m-DAGs

Given an m-DAG, is the missingness mechanism identified or not? We look at two different parameterizations of $p\left(R \mid L^{(1)}, Z\right)$:

Np-identification of missingness mechanisms in m-DAGs

Given an m-DAG, is the missingness mechanism identified or not? We look at two different parameterizations of $p\left(R \mid L^{(1)}, Z\right)$:
(i) m-DAG factorization: (Bhattacharya et al., 2019)

$$
p\left(R \mid \mathrm{pa}_{\mathcal{G}}(R)\right)=\prod_{R_{k} \in R} p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)
$$

Identify each propensity score $p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)$, for all $R_{k} \in R$.

Np-identification of missingness mechanisms in m-DAGs

Given an m-DAG, is the missingness mechanism identified or not? We look at two different parameterizations of $p\left(R \mid L^{(1)}, Z\right)$:
(i) m-DAG factorization: (Bhattacharya et al., 2019)

$$
p\left(R \mid \mathrm{pa}_{\mathcal{G}}(R)\right)=\prod_{R_{k} \in R} p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)
$$

Identify each propensity score $p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)$, for all $R_{k} \in R$.
(ii) Odds ratio parameterization: (Chen, 2007; Nabi et al., 2020)

$$
\prod_{k=1}^{K} p\left(R_{k} \mid R_{-k}=1, \mathrm{pa}_{\mathcal{G}}(R)\right) \times \prod_{k=2}^{K} \mathrm{OR}\left(R_{k}, R_{\prec k} \mid R_{\succ k}=1, \mathrm{pa}_{\mathcal{G}}(R)\right),
$$

where $R_{-k}=R \backslash R_{k}, R_{<k}=\left\{R_{1}, \ldots, R_{k-1}\right\}, R_{\succ k}=\left\{R_{k+1}, \ldots, R_{k}\right\}$.
Identify each univariate conditionals and pairwise odds ratio terms.

Identification arguments

1. m-DAG factorization of the missingness mechanism
2. Odds ratio parameterization of the missingness mechanism

Identification via m-DAG factorization

- Whether and how full/target law is identified in a given m-DAG \mathcal{G}.
- Full law: argue for identification of $p\left(R=r \mid \mathrm{pa}_{\mathcal{G}}(R)\right), \forall r$.
- Target law: argue for identification of $p\left(R=1 \mid \mathrm{pa}_{\mathcal{G}}(R)\right)$.

Identification via m-DAG factorization

- Whether and how full/target law is identified in a given m-DAG \mathcal{G}.
- Full law: argue for identification of $p\left(R=r \mid \mathrm{pa}_{\mathcal{G}}(R)\right), \forall r$.
- Target law: argue for identification of $p\left(R=1 \mid \mathrm{pa}_{\mathcal{G}}(R)\right)$.
- Target law is identified if each propensity score $p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)$ is identified only when $R_{i}=1$ for $R_{i} \in \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)$,

$$
p\left(R=1 \mid \operatorname{pa}_{\mathcal{G}}(R)\right)=\left.\prod_{R_{k} \in R} p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)\right|_{R=1}
$$

Identification via m-DAG factorization

- Whether and how full/target law is identified in a given m-DAG \mathcal{G}.
- Full law: argue for identification of $p\left(R=r \mid \mathrm{pa}_{\mathcal{G}}(R)\right), \forall r$.
- Target law: argue for identification of $p\left(R=1 \mid \mathrm{pa}_{\mathcal{G}}(R)\right)$.
- Target law is identified if each propensity score $p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)$ is identified only when $R_{i}=1$ for $R_{i} \in \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)$,

$$
p\left(R=1 \mid \operatorname{pa}_{\mathcal{G}}(R)\right)=\left.\prod_{R_{k} \in R} p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)\right|_{R=1}
$$

- Full law is identified if each propensity score $p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)$ is identified at all levels of $R_{i} \in \mathrm{pa}_{G}\left(R_{k}\right)$,

$$
p\left(R=r \mid \operatorname{pa}_{\mathcal{G}}(R)\right)=\left.\prod_{R_{k} \in R} p\left(R_{k} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{k}\right)\right)\right|_{R=r}
$$

Identification via m-DAG factorization

- Whether and how full/target law is identified in a given m-DAG \mathcal{G}.
- Full law: argue for identification of $p\left(R=r \mid \mathrm{pa}_{\mathcal{G}}(R)\right), \forall r$.
- Target law: argue for identification of $p\left(R=1 \mid \mathrm{pa}_{\mathcal{G}}(R)\right)$.
- Target law is identified if each propensity score $p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)$ is identified only when $R_{i}=1$ for $R_{i} \in \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)$,

$$
p\left(R=1 \mid \operatorname{pa}_{\mathcal{G}}(R)\right)=\left.\prod_{R_{k} \in R} p\left(R_{k} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{k}\right)\right)\right|_{R=1}
$$

- Full law is identified if each propensity score $p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)$ is identified at all levels of $R_{i} \in \mathrm{pa}_{G}\left(R_{k}\right)$,

$$
p\left(R=r \mid \operatorname{pa}_{\mathcal{G}}(R)\right)=\left.\prod_{R_{k} \in R} p\left(R_{k} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{k}\right)\right)\right|_{R=r}
$$

- There are two major ideas for propensity scores identification:

1. Associational irrelevancy: d-separation
2. Causal irrelevancy: invariance property

1. Associational irrelevancy

- In order to identify the propensity score of $R_{k}, p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)$, we need to select on the following missingness indicators:

$$
R_{k}^{s}=\left\{R_{i} \in R \mid L_{i}^{(1)} \in \operatorname{pa}_{\mathcal{G}}\left(R_{k}\right)\right\} \quad \text { (selection set for } R_{k} \text {) }
$$

1. Associational irrelevancy

- In order to identify the propensity score of $R_{k}, p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)$, we need to select on the following missingness indicators:

$$
R_{k}^{s}=\left\{R_{i} \in R \mid L_{i}^{(1)} \in \operatorname{pa}_{\mathcal{G}}\left(R_{k}\right)\right\} \quad \text { (selection set for } R_{k} \text {) }
$$

- For any $R_{i} \in R_{k}^{s}, R_{i}$ is either a descendant of R_{k} or a non-descendant of R_{k}.
- If R_{i} is a non-descendant of R_{k}, then we can apply the local Markov property which states $R_{k} \Perp \mathrm{nd}_{\mathcal{G}}\left(R_{k}\right) \backslash \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right) \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)$.
- So we can include $R_{i}=1$ in the conditioning set and replace $L_{i}^{(1)}$ with $\left\{L_{i}, R_{i}=1\right\}$.

1. Associational irrelevancy

- In order to identify the propensity score of $R_{k}, p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)$, we need to select on the following missingness indicators:

$$
R_{k}^{s}=\left\{R_{i} \in R \mid L_{i}^{(1)} \in \operatorname{pa}_{\mathcal{G}}\left(R_{k}\right)\right\} \quad \text { (selection set for } R_{k} \text {) }
$$

- For any $R_{i} \in R_{k}^{s}, R_{i}$ is either a descendant of R_{k} or a non-descendant of R_{k}.
- If R_{i} is a non-descendant of R_{k}, then we can apply the local Markov property which states $R_{k} \Perp \mathrm{nd}_{\mathcal{G}}\left(R_{k}\right) \backslash \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right) \mid$ pa $_{\mathcal{G}}\left(R_{k}\right)$.
- So we can include $R_{i}=1$ in the conditioning set and replace $L_{i}^{(1)}$ with $\left\{L_{i}, R_{i}=1\right\}$.
- Formally, for any $R_{i} \in R_{k}^{s} \cap \operatorname{nd}_{\mathcal{G}}\left(R_{k}\right)$, we can write:

$$
\left.p\left(R_{k} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{k}\right)\right)\right|_{R=1}=\left.p(R_{k} \mid \underbrace{\operatorname{pa}_{\mathcal{G}}\left(R_{k}\right)}_{\text {includes } L_{i}^{(1)}}, R_{i}=1)\right|_{R=1} .
$$

Example 1/2: associational irrelevancy (block-parallel)

- Is the full/target law identified in the block-parallel model?
$p\left(R \mid \operatorname{pa}_{\mathcal{G}}(R)\right)=p\left(R_{1} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{1}\right)\right) \times p\left(R_{2} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{2}\right)\right)$

Example 1/2: associational irrelevancy (block-parallel)

- Is the full/target law identified in the block-parallel model?

$$
p\left(R \mid \operatorname{pa}_{\mathcal{G}}(R)\right)=p\left(R_{1} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{1}\right)\right) \times p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)
$$

Identification of $p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{1}\right)\right)$

$$
\begin{array}{rlr}
p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{1}\right)\right) & =p\left(R_{1} \mid L_{2}^{(1)}\right) \\
& =p\left(R_{1} \mid R_{2}=1, L_{2}^{(1)}\right) & \quad R_{1} \Perp R_{2} \mid L_{2}^{(1)} \\
& =p\left(R_{1} \mid R_{2}=1, L_{2}\right) & \text { consistency }
\end{array}
$$

Example 1/2: associational irrelevancy (block-parallel)

- Is the full/target law identified in the block-parallel model?

$$
p\left(R \mid \operatorname{pa}_{\mathcal{G}}(R)\right)=p\left(R_{1} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{1}\right)\right) \times p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)
$$

Identification of $p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{1}\right)\right)$

$$
\begin{array}{rlr}
p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{1}\right)\right) & =p\left(R_{1} \mid L_{2}^{(1)}\right) \\
& =p\left(R_{1} \mid R_{2}=1, L_{2}^{(1)}\right) & R_{1} \Perp R_{2} \mid L_{2}^{(1)} \\
& =p\left(R_{1} \mid R_{2}=1, L_{2}\right) & \text { consistency }
\end{array}
$$

Identification of $p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)$

$$
\begin{array}{rlr}
p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right) & =p\left(R_{2} \mid L_{1}^{(1)}\right) \\
& =p\left(R_{2} \mid R_{1}=1, L_{1}^{(1)}\right) \quad R_{2} \Perp R_{1} \mid L_{1}^{(1)} \\
& =p\left(R_{2} \mid R_{1}=1, L_{1}\right) \quad \text { consistency }
\end{array}
$$

Example 1/2: associational irrelevancy (block-parallel)

- Is the full/target law identified in the block-parallel model?

$$
p\left(R \mid \operatorname{pa}_{\mathcal{G}}(R)\right)=p\left(R_{1} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{1}\right)\right) \times p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)
$$

Identification of $p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{1}\right)\right)$

$$
\begin{array}{rlr}
p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{1}\right)\right) & =p\left(R_{1} \mid L_{2}^{(1)}\right) \\
& =p\left(R_{1} \mid R_{2}=1, L_{2}^{(1)}\right) & R_{1} \Perp R_{2} \mid L_{2}^{(1)} \\
& =p\left(R_{1} \mid R_{2}=1, L_{2}\right) \quad \text { consistency }
\end{array}
$$

Identification of $p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)$

$$
\begin{array}{rlr}
p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right) & =p\left(R_{2} \mid L_{1}^{(1)}\right) \\
& =p\left(R_{2} \mid R_{1}=1, L_{1}^{(1)}\right) \quad R_{2} \Perp R_{1} \mid L_{1}^{(1)} \\
& =p\left(R_{2} \mid R_{1}=1, L_{1}\right) \quad \text { consistency }
\end{array}
$$

- So $p\left(R \mid \mathrm{pa}_{\mathcal{G}}(R)\right)$ is ID, which means the full and target laws are both ID.

Example 2/2: associational irrelevancy (block-conditional MAR)

- Is the full/target law identified in the block-conditional MAR model?
$p\left(R \mid \operatorname{pa}_{\mathcal{G}}(R)\right)=p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{1}\right)\right) \times p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)$

Example 2/2: associational irrelevancy (block-conditional MAR)

- Is the full/target law identified in the block-conditional MAR model?

$$
p\left(R \mid \operatorname{pa}_{\mathcal{G}}(R)\right)=p\left(R_{1} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{1}\right)\right) \times p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)
$$

- $p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{1}\right)\right)=p\left(R_{1}\right)$ is identified.

Identification of $p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)$

$$
\begin{aligned}
p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right) & =p\left(R_{2} \mid R_{1}, L_{1}^{(1)}\right) \\
& =? ? ? \\
\left.p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)\right|_{R=1} & =p\left(R_{2}=1 \mid R_{1}=1, L_{1}^{(1)}\right) \\
& =p\left(R_{2}=1 \mid R_{1}=1, L_{1}\right) \quad \text { consistency }
\end{aligned}
$$

Example 2/2: associational irrelevancy (block-conditional MAR)

- Is the full/target law identified in the block-conditional MAR model?

$$
p\left(R \mid \operatorname{pa}_{\mathcal{G}}(R)\right)=p\left(R_{1} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{1}\right)\right) \times p\left(R_{2} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{2}\right)\right)
$$

- $p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{1}\right)\right)=p\left(R_{1}\right)$ is identified.

$$
\begin{aligned}
& \text { Identification of } p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right) \\
& \qquad \begin{aligned}
p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right) & =p\left(R_{2} \mid R_{1}, L_{1}^{(1)}\right) \\
& =? ? ? \\
\left.p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)\right|_{R=1} & =p\left(R_{2}=1 \mid R_{1}=1, L_{1}^{(1)}\right) \\
& =p\left(R_{2}=1 \mid R_{1}=1, L_{1}\right) \quad \text { consistency }
\end{aligned}
\end{aligned}
$$

- Only $p\left(R_{2} \mid R_{1}=1, L_{1}^{(1)}\right)$ is identified, so the target law is certainly ID.
- It seems the full law might NOT be identified. We have to prove that the full law is not identified.

A non-identified structure

- Claim: $p\left(R_{2}=r_{2} \mid R_{1}=0, L_{1}^{(1)}\right)$ is not ID.

- Assume binary data. So the full law $p\left(R, L^{(1)}\right)$ would have 7 parameters.
- 5 identified parameters:
- $\alpha_{1}: p\left(L_{1}^{(1)}=1\right)=p\left(L_{1}^{(1)}=1 \mid R_{1}=1\right)=p\left(L_{1}=1 \mid R_{1}=1\right)$
- $\alpha_{2}: p\left(L_{2}^{(1)}=1\right)=p\left(L_{2}^{(1)}=1 \mid R_{2}=1\right)=p\left(L_{2}=1 \mid R_{2}=1\right)$
- $\alpha_{3}: p\left(R_{1}=1\right)$
- $\alpha_{4,5}: p\left(R_{2}=1 \mid R_{1}=1, L_{1}^{(1)}=I_{1}\right)=p\left(R_{2}=1 \mid R_{1}=1, L_{1}=I_{1}\right)$.
- 2 unidentified parameters:
- $\alpha_{6,7}: p\left(R_{2}=1 \mid R_{1}=0, L_{1}^{(1)}=I_{1}\right), I_{1} \in\{0,1\}$

Proofing non-identifiability claims

	$p\left(R_{1}\right)$	$L_{1}^{(1)}$	$p\left(L_{1}^{(1)}\right)$	$L_{2}^{(1)}$	$p\left(L_{2}^{(1)}\right)$	R 0 1	R_{1}	$L_{1}^{(1)}$	$\begin{array}{\|c} p\left(R_{2} \mid R_{1}, L_{1}^{(1)}\right) \\ \hline d \\ 1-d \\ \hline e \end{array}$	$L_{1}^{(1)} L_{2}^{(1)}$
							0	0		
						1	0	0		
0	a	0	b	0	c	1	1	0	$1-e$	${ }^{L_{1}}{ }_{R_{1} \longrightarrow R_{2}}^{L_{2}}$
1	1-a	1	$1-b$	1	c	0	0	1	f	
						1	0	1	$1-f$	
						0	1	1	${ }_{-}$	

R_{1}	R_{2}	$L_{1}^{(1)}$	$L_{2}^{(1)}$	p(FULL LAW)	L_{1}	L_{2}	p(OBSERVED LAW)
0	0	$\begin{aligned} & 10 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} a b c d \\ a f(1-b) c \\ a d b(1-c) \\ a f(1-b)(1-c) \\ \hline \end{gathered}$?	?	$a[d b+f(1-b))]$
1	0	$\begin{aligned} & \hline \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \hline \end{aligned}$	$\begin{aligned} & \hline \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & \hline \hline \end{aligned}$	$\begin{gathered} \hline(1-a) e b c \\ (1-a) g(1-b) c \\ (1-a) e b(1-c) \\ (1-a) g(1-b)(1-c) \\ \hline \hline \end{gathered}$	1	?	$\begin{gathered} (1-a) e b \\ (1-a) g(1-b) \end{gathered}$
0	1	$\begin{aligned} & \hline \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} a(1-d) b c \\ a(1-f)(1-b) c \\ a(1-d) b(1-c) \\ a(1-f)(1-b)(1-c) \\ \hline \hline \end{gathered}$?	0	$\begin{gathered} \hline a c[1-(d b+f(1-b))] \\ a(1-c)[1-(d b+f(1-b))] \end{gathered}$
1	1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} (1-a)(1-e) b c \\ (1-a)(1-g)(1-b) c \\ (1-a)(1-e) b(1-c) \\ (1-a)(1-g)(1-b)(1-c) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline \hline(1-a)(1-e) b c \\ (1-a)(1-g)(1-b) c \\ (1-a)(1-e) b(1-c) \\ (1-a)(1-g)(1-b)(1-c) \\ \hline \end{gathered}$

We can pick any $\{d, f\}$ as long as $b d+(1-b) f$ stays the same.

Colluder: non-identified structure

Definition (Colluder)

If $\exists R_{i}, R_{j} \in R$ such that $R_{i} \rightarrow R_{j} \leftarrow L_{i}^{(1)}$, then a special collider structure forms at R_{j}, referred to as colluder.

Lemma (Colluder non-identification)
If $\exists R_{i}, R_{j} \in R$ such that $R_{i} \rightarrow R_{j} \leftarrow L_{i}^{(1)}$ then $p\left(R_{j} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{j}\right) \backslash R_{i}, R_{i}=0\right)$ is not identified (Bhattacharya et al., 2019).

The above result means that whenever we spot a colluder on the m-DAG, we can immediately conclude the full law is not identified.

Associational irrelevancy: limitations

- Is the full/target law identified in the permutation model?

$$
p\left(R \mid L^{(1)}\right)=p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{1}\right)\right) \times p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)
$$

Associational irrelevancy: limitations

- Is the full/target law identified in the permutation model?

$$
p\left(R \mid L^{(1)}\right)=p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{1}\right)\right) \times p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)
$$

Identification of $p\left(R_{i} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{i}\right)\right)$

$$
\begin{aligned}
& p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)=p\left(R_{2} \mid R_{1}, L_{1}\right) \\
& p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{1}\right)\right)=p\left(R_{1} \mid L_{2}^{(1)}\right) \quad R_{1} \not \cap R_{2} \mid L_{2}^{(1)}
\end{aligned}
$$

Associational irrelevancy: limitations

- Is the full/target law identified in the permutation model?

$$
p\left(R \mid L^{(1)}\right)=p\left(R_{1} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{1}\right)\right) \times p\left(R_{2} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{2}\right)\right)
$$

Identification of $p\left(R_{i} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{i}\right)\right)$

$$
\begin{aligned}
& p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)=p\left(R_{2} \mid R_{1}, L_{1}\right) \\
& p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{1}\right)\right)=p\left(R_{1} \mid L_{2}^{(1)}\right) \quad R_{1} \not \cap R_{2} \mid L_{2}^{(1)}
\end{aligned}
$$

- What does this mean? Is the propensity score of R_{1} not identified? which would then imply the full law is not ID.
- To answer this question, we either need to prove the propensity score is not identified or find a way to identifiy it.

2. Causal irrelevancy

Invariance property:

- Given the propensity score for $R_{k} \in R$, the conditioning set pa ${ }_{\mathcal{G}}\left(R_{k}\right)$ captures all the direct causes of R_{k}. Hence, it remains invariant to any set of interventions that disrupts other parts of the full law.
- Formally, given $R^{*} \subseteq R \backslash R_{k}$, we have

$$
p\left(R_{k} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{k}\right)\right)=p\left(R_{k} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{k}\right), \mathrm{do}\left(R^{*}=1\right)\right) .
$$

2. Causal irrelevancy

Invariance property:

- Given the propensity score for $R_{k} \in R$, the conditioning set pa ${ }_{\mathcal{G}}\left(R_{k}\right)$ captures all the direct causes of R_{k}. Hence, it remains invariant to any set of interventions that disrupts other parts of the full law.
- Formally, given $R^{*} \subseteq R \backslash R_{k}$, we have

$$
p\left(R_{k} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{k}\right)\right)=p\left(R_{k} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{k}\right), \operatorname{do}\left(R^{*}=1\right)\right) .
$$

- Due to invariance property of the propensity scores, we can sometimes succeed in identifying a propensity score by exploring interventional distributions where a subset of variables are intervened on.

Intervention operation on missingness indicators

An intervention that sets $R_{k}=1$, entails the following changes:

- Graphical changes to the missing data DAG $\mathcal{G}(V)$
- In the corresponding m-DAG \mathcal{G}, delete all the incoming edges into R_{k} and fix R_{k} to take value 1 , and
- Treat the counterfactual variable $L_{k}^{(1)}$ as L_{k} (by consistency).
- Probabilistical changes to the joint distribution $p(V)$
- In the corresponding joint law $p(V)$, drop the term $p\left(R_{k} \mid \mathrm{pa}_{G}\left(R_{k}\right)\right)$ from the factorization of $p(V)$, and evaluate all terms at $R_{k}=1$.

Example: causal irrelevancy

$\mathcal{G}_{0}: \quad R_{1} \not \Perp R_{2} \mid L_{2}^{(1)}$

Invariance property:

$$
p\left(R_{1} \mid L_{2}^{(1)}\right)=p\left(R_{1} \mid L_{2}^{(1)}, \operatorname{do}\left(R_{2}=1\right)\right)
$$

Example: causal irrelevancy

Permutation \mathcal{G}_{0}
$\mathcal{G}_{0}: \quad R_{1} \not \Perp R_{2} \mid L_{2}^{(1)}$

Invariance property:

$$
p\left(R_{1} \mid L_{2}^{(1)}\right)=p\left(R_{1} \mid L_{2}^{(1)}, \operatorname{do}\left(R_{2}=1\right)\right)
$$

Graphical and probabilistical changes after intervening on R_{2} :

$$
p\left(R_{1}, L_{1}^{(1)}, L_{2}^{(1)}, L_{1} \mid \operatorname{do}\left(R_{2}=1\right)\right)=\left.\frac{p\left(R_{1}, L_{1}^{(1)}, L_{2}^{(1)}, L_{1}, R_{2}\right)}{p\left(R_{2} \mid R_{1}, L_{1}\right)}\right|_{R_{2}=1}
$$

Permutation \mathcal{G}_{1}

Example: causal irrelevancy

Permutation \mathcal{G}_{0}
$\mathcal{G}_{0}: \quad R_{1} \not \Perp R_{2} \mid L_{2}^{(1)}$

Invariance property:

$$
p\left(R_{1} \mid L_{2}^{(1)}\right)=p\left(R_{1} \mid L_{2}^{(1)}, \operatorname{do}\left(R_{2}=1\right)\right)
$$

Graphical and probabilistical changes after intervening on R_{2} :

$$
p\left(R_{1}, L_{1}^{(1)}, L_{2}^{(1)}, L_{1} \mid \operatorname{do}\left(R_{2}=1\right)\right)=\left.\frac{p\left(R_{1}, L_{1}^{(1)}, L_{2}^{(1)}, L_{1}, R_{2}\right)}{p\left(R_{2} \mid R_{1}, L_{1}\right)}\right|_{R_{2}=1}
$$

Permutation \mathcal{G}_{1}

- The propensity score of R_{1} is identified from the above intervention dist.

Example ctd. causal irrelevancy

$$
\begin{array}{ll}
L_{1}^{(1)} \longrightarrow L_{2}^{(1)}=L_{2} & p\left(R_{1}, L_{1}^{(1)}, L_{2}^{(1)}, L_{1} \mid \operatorname{do}\left(R_{2}=1\right)\right)=\frac{p\left(R_{1}, L_{1}^{(1)}, L_{2}, L_{1}, R_{2}=1\right)}{p\left(R_{2}=1 \mid R_{1}, L_{1}\right)} \\
R_{1} & p\left(R_{1}, L_{2}^{(1)} \mid \operatorname{do}\left(R_{2}=1\right)\right)=\sum_{L_{1}} \frac{p\left(R_{1}, l_{1}, L_{2}, R_{2}=1\right)}{p\left(R_{2}=1 \mid R_{1}, l_{1}\right)} .
\end{array}
$$

- The propensity score of R_{1} is identified from the above intervention dist.

$$
\begin{aligned}
p\left(R_{1} \mid L_{2}^{(1)}\right) & =p\left(R_{1} \mid L_{2}^{(1)}, \operatorname{do}\left(R_{2}=1\right)\right) \\
& =\frac{p\left(R_{1}, L_{2}^{(1)} \mid \operatorname{do}\left(R_{2}=1\right)\right)}{p\left(L_{2}^{(1)} \mid \operatorname{do}\left(R_{2}=1\right)\right)} .
\end{aligned}
$$

First equality holds by the invariance property and second holds by Bayes rule.

Order of interventions

- Target law is ID via parallel/simultaneous interventions on R_{1} and R_{2}.

$$
\begin{aligned}
p\left(L^{(1)}\right) & =\left.\frac{p\left(L^{(1)}, R\right)}{p\left(R_{1} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{1}\right)\right) \times p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)}\right|_{R=1} \\
& =\frac{p(L, R=1)}{p\left(R_{1}=1 \mid R_{2}=1, L_{2}\right) \times p\left(R_{2}=1 \mid R_{1}=1, L_{1}\right)} .
\end{aligned}
$$

Block-parallel

Order of interventions

- Target law is ID via parallel/simultaneous interventions on R_{1} and R_{2}.

$$
\begin{aligned}
p\left(L^{(1)}\right) & =\left.\frac{p\left(L^{(1)}, R\right)}{p\left(R_{1} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{1}\right)\right) \times p\left(R_{2} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{2}\right)\right)}\right|_{R=1} \\
& =\frac{p(L, R=1)}{p\left(R_{1}=1 \mid R_{2}=1, L_{2}\right) \times p\left(R_{2}=1 \mid R_{1}=1, L_{1}\right)} .
\end{aligned}
$$

Block-parallel

- Target law ID is obtained via sequential interventions on first R_{2} and then R_{1}.

$$
\begin{aligned}
p\left(L^{(1)}\right) & =\left.\frac{p\left(L^{(1)}, R\right)}{p\left(R_{1} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{1}\right)\right) \times p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)}\right|_{R=1} \\
& =\frac{p(L, R=1)}{p\left(R_{1}=1 \mid L_{2}^{(1)}, \operatorname{do}\left(R_{2}=1\right)\right) \times p\left(R_{2}=1 \mid R_{1}=1, L_{1}\right)}
\end{aligned}
$$

Main identification challenge: selection bias

Can we apply the causal-irrelevancy idea to the block-parallel model?

$$
\begin{aligned}
p\left(R_{2} \mid L_{1}^{(1)}\right) & =p\left(R_{2} \mid L_{1}^{(1)}, \operatorname{do}\left(R_{1}=1\right)\right) \\
& =\frac{p\left(R_{2}, L_{1}^{(1)} \mid \operatorname{do}\left(R_{1}=1\right)\right)}{p\left(L_{1}^{(1)} \mid \operatorname{do}\left(R_{1}=1\right)\right)}
\end{aligned}
$$

Main identification challenge: selection bias

Can we apply the causal-irrelevancy idea to the block-parallel model?

$$
\begin{aligned}
p\left(R_{2} \mid L_{1}^{(1)}\right) & =p\left(R_{2} \mid L_{1}^{(1)}, \operatorname{do}\left(R_{1}=1\right)\right) \\
& =\frac{p\left(R_{2}, L_{1}^{(1)} \mid \operatorname{do}\left(R_{1}=1\right)\right)}{p\left(L_{1}^{(1)} \mid \operatorname{do}\left(R_{1}=1\right)\right)}
\end{aligned}
$$

An intervention on R_{1} implies:

$$
p\left(R_{2}, L_{1}^{(1)}, L_{2}^{(1)}, L_{2} \mid \operatorname{do}\left(R_{1}=1\right)\right)=\frac{p\left(L_{1}, R_{1}=1, L_{2}^{(1)}, L_{2}, R_{2}\right)}{p\left(R_{1}=1 \mid L_{2}^{(1)}\right)}
$$

We can only evaluate the above expression when $R_{2}=1$:

$$
p\left(L_{1}^{(1)}, R_{2}=1 \mid \operatorname{do}\left(R_{1}=1\right)\right)=\sum_{l_{2}^{(1)}} \frac{p\left(L_{2}^{(1)}, R_{1}=1, R_{2}=1\right)}{p\left(R_{1}=1 \mid L_{2}^{(1)}, R_{2}=1\right)}
$$

Main identification challenge: selection bias

Can we apply the causal-irrelevancy idea to the block-parallel model?

$$
\begin{aligned}
p\left(R_{2} \mid L_{1}^{(1)}\right) & =p\left(R_{2} \mid L_{1}^{(1)}, \operatorname{do}\left(R_{1}=1\right)\right) \\
& =\frac{p\left(R_{2}, L_{1}^{(1)} \mid \operatorname{do}\left(R_{1}=1\right)\right)}{p\left(L_{1}^{(1)} \mid \operatorname{do}\left(R_{1}=1\right)\right)}
\end{aligned}
$$

An intervention on R_{1} implies:

$$
p\left(R_{2}, L_{1}^{(1)}, L_{2}^{(1)}, L_{2} \mid \operatorname{do}\left(R_{1}=1\right)\right)=\frac{p\left(L_{1}, R_{1}=1, L_{2}^{(1)}, L_{2}, R_{2}\right)}{p\left(R_{1}=1 \mid L_{2}^{(1)}\right)}
$$

We can only evaluate the above expression when $R_{2}=1$:

$$
p\left(L_{1}^{(1)}, R_{2}=1 \mid \operatorname{do}\left(R_{1}=1\right)\right)=\sum_{l_{2}^{(1)}} \frac{p\left(L_{2}^{(1)}, R_{1}=1, R_{2}=1\right)}{p\left(R_{1}=1 \mid L_{2}^{(1)}, R_{2}=1\right)}
$$

Intervening on R_{1} induces a selection on R_{2}.

Inevitable selection bias

- The lesson is that sequential interventions do not help with identification arguments in the block-parallel model. Indeed, we need parallel interventions to dodge the selection bias issue.

Inevitable selection bias

- The lesson is that sequential interventions do not help with identification arguments in the block-parallel model. Indeed, we need parallel interventions to dodge the selection bias issue.
- Sometimes we cannot avoid the selection bias and end up with unidentified distributions. An example of this is the so-called criss-cross model,

- Full law $p\left(L^{(1)}, R\right)$ is not identified because of the colluder at R_{2}.
- Target law $p\left(L^{(1)}\right)$ is also provably not identified (Nabi and Bhattacharya, 2022).

Partial orders of interventions

- Sufficient rules for identification: finding valid partial orders of interventions that avoid the issue of selection bias.
- That is a combination of sequential and parallel interventions (as opposed to a total order in causal inference).
- Dodging selection bias requires:
- Set interventions
- Intervening on variables other than R
- Interventions on margins of \mathcal{G} (pseudo-propensity scores)
- See Bhattacharya et al. (2019) and Nabi et al. (2022) for more discussions.

Identification arguments

1. m-DAG factorization of the missingness mechanism
2. Odds ratio parameterization of the missingness mechanism

Odds ratio parameterization (Chen, 2007)

Given disjoint sets of variables A, B, C, and reference values a_{0}, b_{0} :

$$
p(A, B \mid C)=\frac{1}{\mathcal{Z}(C)} \times p\left(A \mid B=b_{0}, C\right) \times p\left(B \mid A=a_{0}, C\right) \times \mathrm{OR}(A, B \mid C)
$$

where

$$
\begin{aligned}
\mathrm{OR}(A=a, B=b \mid C) & =\frac{p(A=a \mid B=b, C)}{p\left(A=a_{0} \mid B=b, C\right)} \times \frac{p\left(A=a_{0} \mid B=b_{0}, C\right)}{p\left(A=a \mid B=b_{0}, C\right)} \\
& =\frac{p(B=b \mid A=a, C)}{p\left(B=b_{0} \mid A=a, C\right)} \times \frac{p\left(B=b_{0} \mid A=a_{0}, C\right)}{p\left(B=b \mid A=a_{0}, C\right)}
\end{aligned}
$$

$$
\mathcal{Z}(C)=\sum_{a, b} p\left(A=a \mid B=b_{0}, C\right) \times p\left(B=b \mid A=a_{0}, C\right) \times \operatorname{OR}(A=a, B=b \mid C)
$$

Odds ratio parameterization (Chen, 2007)

Given disjoint sets of variables A, B, C, and reference values a_{0}, b_{0} :

$$
p(A, B \mid C)=\frac{1}{\mathcal{Z}(C)} \times p\left(A \mid B=b_{0}, C\right) \times p\left(B \mid A=a_{0}, C\right) \times \mathrm{OR}(A, B \mid C)
$$

where

$$
\begin{aligned}
& \mathrm{OR}(A=a, B=b \mid C)= \frac{p(A=a \mid B=b, C)}{p\left(A=a_{0} \mid B=b, C\right)} \times \frac{p\left(A=a_{0} \mid B=b_{0}, C\right)}{p\left(A=a \mid B=b_{0}, C\right)} \\
&=\frac{p(B=b \mid A=a, C)}{p\left(B=b_{0} \mid A=a, C\right)} \times \frac{p\left(B=b_{0} \mid A=a_{0}, C\right)}{p\left(B=b \mid A=a_{0}, C\right)} \\
& \mathcal{Z}(C)=\sum_{a, b} p\left(A=a \mid B=b_{0}, C\right) \times p\left(B=b \mid A=a_{0}, C\right) \times \operatorname{OR}(A=a, B=b \mid C)
\end{aligned}
$$

- It is symmetric: $\operatorname{OR}(A, B \mid C)=\operatorname{OR}(B, A \mid C)$
- $\mathrm{OR}\left(A=a_{0}, B \mid C\right)=\mathrm{OR}\left(A, B=b_{0} \mid C\right)=\mathrm{OR}\left(A=a_{0}, B=b_{0} \mid C\right)=1$

Identification via odds ratio parameterization

- m-DAG factorization view for identification:

$$
p\left(R_{i}, R_{j} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{i}, R_{j}\right)\right)=p\left(R_{i} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{i}\right)\right) \times p\left(R_{j} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{j}\right)\right)
$$

Identify:
$-p\left(R_{i} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{i}\right)\right)$,
$-p\left(R_{j} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{j}\right)\right)$.

- Odds ratio parameterization view for identification:

$$
p\left(R_{i}, R_{j} \mid L^{(1)}\right)=\frac{1}{\mathcal{Z}\left(L^{(1)}\right)} \times p\left(R_{i} \mid R_{j}=1, L^{(1)}\right) \times p\left(R_{j} \mid R_{i}=1, L^{(1)}\right) \times \mathrm{OR}\left(R_{i}, R_{j} \mid L^{(1)}\right)
$$

Identify:

- $p\left(R_{i} \mid R_{j}=1, L^{(1)}\right)$,
- $p\left(R_{j} \mid R_{i}=1, L^{(1)}\right)$,
$\Rightarrow \mathrm{OR}\left(R_{i}=0, R_{j}=0 \mid L^{(1)}\right)$.

Example: block-parallel model

Example: block-parallel model

Note that $R_{1} \Perp L_{1}^{(1)} \mid R_{2}, L_{2}^{(1)}$ and $R_{2} \Perp L_{2}^{(1)} \mid R_{1}, L_{1}^{(1)}$,

Example: block-parallel model

Note that $R_{1} \Perp L_{1}^{(1)} \mid R_{2}, L_{2}^{(1)}$ and $R_{2} \Perp L_{2}^{(1)} \mid R_{1}, L_{1}^{(1)}$,

$$
\begin{aligned}
& \text { (1) }: p\left(R_{1} \mid R_{2}=1, L^{(1)}\right)=p\left(R_{1} \mid R_{2}=1, L_{2}^{(1)}\right)=p\left(R_{1} \mid R_{2}=1, L_{2}\right) \\
& \text { (2) }: p\left(R_{2} \mid R_{1}=1, L^{(1)}\right)=p\left(R_{2} \mid R_{1}=1, L_{1}^{(1)}\right)=p\left(R_{2} \mid R_{1}=1, L_{1}\right) \\
& \text { (3) }: \operatorname{OR}\left(R_{1}=r_{1}, R_{2}=r_{2} \mid L^{(1)}\right)=1 .
\end{aligned}
$$

Example: block-parallel model

Note that $R_{1} \Perp L_{1}^{(1)} \mid R_{2}, L_{2}^{(1)}$ and $R_{2} \Perp L_{2}^{(1)} \mid R_{1}, L_{1}^{(1)}$,

$$
\begin{aligned}
& \text { (1) }: p\left(R_{1} \mid R_{2}=1, L^{(1)}\right)=p\left(R_{1} \mid R_{2}=1, L_{2}^{(1)}\right)=p\left(R_{1} \mid R_{2}=1, L_{2}\right) \\
& \text { (2) }: p\left(R_{2} \mid R_{1}=1, L^{(1)}\right)=p\left(R_{2} \mid R_{1}=1, L_{1}^{(1)}\right)=p\left(R_{2} \mid R_{1}=1, L_{1}\right) \\
& \text { (3) }: \operatorname{OR}\left(R_{1}=r_{1}, R_{2}=r_{2} \mid L^{(1)}\right)=1 .
\end{aligned}
$$

Yes, both full and target laws are identified.

Why the two parameterizations?

There exist identified MANR models where:

- m-DAG factorization approach fails to identify the model, but the odds ratio parameterization approach succeeds.
- Odds ratio parameterization approach fails to identify the model, but the $m-D A G$ factorization approach succeeds.

Example: m-DAG factorization fails!

Is the target/full law identified?

$$
\begin{aligned}
p\left(R \mid L^{(1)}\right) & =\prod_{R_{i} \in R} p\left(R_{i} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{i}\right)\right) \\
& =p\left(R_{1} \mid R_{2}, L_{3}^{(1)}\right) \times p\left(R_{2} \mid R_{3}, L_{1}^{(1)}\right) \times p\left(R_{3} \mid L_{1}^{(1)}\right) .
\end{aligned}
$$

Example ctd. identification of the propensity score of R_{1}

$$
\begin{aligned}
p\left(R \mid L^{(1)}\right) & =\prod_{R_{i} \in R} p\left(R_{i} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{i}\right)\right) \\
& =p\left(R_{1} \mid R_{2}, L_{3}^{(1)}\right) \times p\left(R_{2} \mid R_{3}, L_{1}^{(1)}\right) \times p\left(R_{3} \mid L_{1}^{(1)}\right) .
\end{aligned}
$$

Nonparametric identification of $p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{i}\right)\right)$

$$
\begin{array}{rlr}
p\left(R_{1} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{1}\right)\right) & =p\left(R_{1} \mid R_{2}, L_{3}^{(1)}\right) \\
& =p\left(R_{1} \mid R_{3}=1, R_{2}, L_{3}^{(1)}\right) & \quad R_{1} \Perp R_{3} \mid R_{2}, L_{3}^{(1)} \\
& =p\left(R_{1} \mid R_{3}=1, R_{2}, L_{3}\right) & \text { consistency. }
\end{array}
$$

Example ctd. identification of the propensity score of R_{2}

Nonparametric identification of $\left.p\left(R_{2} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{i}\right)\right)\right|_{R=1}$

$$
\begin{array}{rlrl}
\left.p\left(R_{2}=1 \mid \mathrm{pa}_{\mathcal{G}}\left(R_{2}\right)\right)\right|_{R=1} & =p\left(R_{2}=1 \mid R_{3}=1, L_{1}^{(1)}\right) \\
& =p\left(R_{2}=1 \mid R_{3}=1, L_{1}^{(1)}, \operatorname{do}\left(R_{1}=1\right)\right) & \text { causal irrelevance } \\
& =p^{*}\left(R_{2}=1 \mid R_{3}=1, L_{1}^{(1)}\right) \\
& =p^{*}\left(R_{2}=1 \mid R_{1}=1, R_{3}=1, L_{1}^{(1)}\right) \quad R_{2} \Perp_{\mathcal{G}^{*}} R_{1} \mid R_{3}, L_{1}^{(1)} \\
& =p^{*}\left(R_{2}=1 \mid R_{1}=1, R_{3}=1, L_{1}\right) \quad \text { consistency }
\end{array}
$$

Example ctd. identification of the propensity score of R_{3}

- Unfortunately, similar tricks do not help with identification of $p\left(R_{3} \mid \mathrm{pa}_{\mathcal{G}}\left(R_{3}\right)\right)$ due to selection bias on R_{3} from intervening on either R_{1} or R_{2}.
- It seems that the missingness mechanism is not identified. Thus, it seems neither the full law nor the target law are identified. Can we prove this non-identification claim?!
- The answer is no, because the model is indeed identified. We can prove identification using a different parameterization of the missingness mechanism (via odds ratio parameterization).

Example ctd. odds ratio parameterization

Univariate conditionals:
$\Rightarrow p\left(R_{1} \mid R_{2}=1, R_{3}=1, L^{(1)}\right)=p\left(R_{1} \mid R_{2}=1, R_{3}=1, L_{3}\right)$
$-R_{1} \Perp L_{1}^{(1)}, L_{2}^{(2)} \mid R_{2}, R_{3}, L_{3}^{(1)}$
$\Rightarrow p\left(R_{2} \mid R_{1}=1, R_{3}=1, L^{(1)}\right)=p\left(R_{2} \mid R_{1}=1, R_{3}=1, L_{1}, L_{3}\right)$
$-R_{2} \Perp L_{2}^{(1)} \mid R_{1}, R_{3}, L_{1}^{(2)}, L_{3}^{(1)}$

- $p\left(R_{3} \mid R_{1}=1, R_{2}=1, L^{(1)}\right)=p\left(R_{3} \mid R_{2}=1, R_{1}=1, L_{1}\right)$
$-R_{3} \Perp L_{2}^{(1)}, L_{3}^{(1)} \mid R_{1}, R_{2}, L_{1}^{(2)}$
Pairwise odds ratios:
$-\operatorname{OR}\left(R_{1}, R_{2} \mid R_{3}=1, L^{(1)}\right)$
$-\operatorname{OR}\left(R_{2}, R_{3} \mid R_{1}=1, L^{(1)}\right)$
$-\operatorname{OR}\left(R_{1}, R_{3} \mid R_{2}=1, L^{(1)}\right)$

Example ctd. identification of the paiwise odds ratio terms

$$
\begin{aligned}
& \mathrm{OR}\left(R_{2}=0, R_{3}=0 \mid R_{1}=1, L^{(1)}\right) \\
& \quad= \frac{p\left(R_{3}=0 \mid R_{2}=0, R_{1}=1, L^{(1)}\right)}{p\left(R_{3}=1 \mid R_{2}=0, R_{1}=1, L^{(1)}\right)} \times \frac{p\left(R_{3}=1 \mid R_{2}=1, R_{1}=1, L^{(1)}\right)}{p\left(R_{3}=0 \mid R_{2}=1, R_{1}=1, L^{(1)}\right)} \\
& \quad=\frac{p\left(R_{3}=0 \mid R_{2}=0, R_{1}=1, L_{1}^{(1)}\right)}{p\left(R_{3}=1 \mid R_{2}=0, R_{1}=1, L_{1}^{(1)}\right)} \times \frac{p\left(R_{3}=1 \mid R_{2}=1, R_{1}=1, L_{1}^{(1)}\right)}{p\left(R_{3}=0 \mid R_{2}=1, R_{1}=1, L_{1}^{(1)}\right)} \\
& \quad=\frac{p\left(R_{3}=0 \mid R_{2}=0, R_{1}=1, L_{1}\right)}{p\left(R_{3}=1 \mid R_{2}=0, R_{1}=1, L_{1}\right)} \times \frac{p\left(R_{3}=1 \mid R_{2}=1, R_{1}=1, L_{1}\right)}{p\left(R_{3}=0 \mid R_{2}=1, R_{1}=1, L_{1}\right)}
\end{aligned}
$$

- First equality holds by definition, second by $R_{3} \Perp L_{2}^{(1)}, L_{3}^{(1)} \mid R_{1}, R_{2}, L_{1}^{(1)}$, and third by consistency.
$-\mathrm{OR}\left(R_{2}, R_{3} \mid R_{1}=1, L^{(1)}\right)$ and $\operatorname{OR}\left(R_{1}, R_{3} \mid R_{2}=1, L^{(1)}\right)$ can be similarly identified. Thus, the missingness mechanism, full law, and target law are all identified.

Odds ratio parameterization of $p\left(R \mid L^{(1)}\right)$

- Without loss of generality assume $Z=\emptyset$.
\triangleright Let $R_{-k}=V \backslash R_{k}, R_{\prec k}=\left\{R_{1}, \ldots, R_{k-1}\right\}$, and $R_{\succ k}=\left\{R_{k+1}, \ldots, R_{K}\right\}$.
- The general form of odds ratio parameterization is as follows:

$$
\begin{gathered}
p\left(R \mid L^{(1)}\right)=\frac{1}{\mathcal{Z}\left(L^{(1)}\right)} \times \prod_{k=1}^{k} p\left(R_{k} \mid R_{-k}=1, L^{(1)}\right) \times \prod_{k=2}^{K} \mathrm{OR}\left(R_{k}, R_{\prec k} \mid R_{\succ k}=1, L^{(1)}\right), \\
\mathrm{OR}\left(R_{k}, R_{\prec k} \mid R_{\succ k}=1, L^{(1)}\right)=\frac{p\left(R_{k} \mid R_{\succ k}=1, R_{\prec k}, L^{(1)}\right)}{p\left(R_{k}=1 \mid R_{\succ k}=1, R_{<k}, X^{(1)}\right)} \times \frac{p\left(R_{k}=1 \mid R_{-k}=1, X^{(1)}\right)}{p\left(R_{k} \mid R_{-k}=1, L^{(1)}\right)} .
\end{gathered}
$$

Need to identify:

- Univariate conditional distributions: $p\left(R_{k} \mid R_{-k}=1, L^{(1)}\right)$
- Odds ratio terms: $\operatorname{OR}\left(R_{k}, R_{\prec k} \mid R_{\succ k}=1, L^{(1)}\right)$
- When can we succeed?
- When do we fail?

Full law identification theory in m-DAGs

Theorem (Graphical characterization of identified full laws)

Full law $p\left(R, L^{(1)}, Z\right)$ that is Markov relative to a missing data DAG \mathcal{G} is identified if and only if \mathcal{G} does not contain the following two structures: (Nabi et al., 2020)

- self-censoring edge: $L_{i}^{(1)} \rightarrow R_{i}$,
- colluder: $L_{j}^{(1)} \rightarrow R_{i} \leftarrow R_{j}$.

self-censoring

colluder
- These graphical conditions are sound and complete for full law ID.
- Identification functional is given by the odds ratio parameterization of $p\left(R \mid Z, L^{(1)}\right)$.

Proof sketch

- Absence of self-censoring edges and colluders imply:

$$
R_{k} \Perp L_{k}^{(1)} \mid R_{-k}, L^{(1)} \backslash L_{k}^{(1)}
$$

- Odds ratio parameterization:
$p\left(R \mid L^{(1)}\right)=\frac{1}{\mathcal{Z}\left(L^{(1)}\right)} \times \prod_{k=1}^{K} p\left(R_{k} \mid R_{-k}=1, L^{(1)}\right) \times \prod_{k=2}^{K} \mathrm{OR}\left(R_{k}, R_{\prec k} \mid R_{\succ k}=1, L^{(1)}\right)$,
$>p\left(R_{k} \mid R_{-k}=1, L^{(1)}\right)=p\left(R_{k} \mid R_{-k}=1, L_{-k}\right)$.
$-\mathrm{OR}\left(R_{i}, R_{j} \mid R_{-\{i, j\}}=1, L^{(1)}\right)$ is identified via "symmetric argument,"
- It is not a function of $L_{i}^{(1)}$ and it is not a function of $L_{j}^{(1)}$
- DAGs with no self-censoring edges and no colluders are submodels of Itemwise Conditionally Independence Nonresponse model
(Sadinle and Reiter, 2017; Shpitser, 2016; Malinsky et al., 2021)

Example: odds ratio parameterization fails!

- If there exists a colluder in the m-DAG, then the full law is not identifiable. However, the target law might still be identified.
- Even though the odds ratio parameterization led to completeness results for full law identification, the m-DAG factorization is still the only tool we can use for target law identification (in the presence of colluders).
- An example of this is the block-conditional MAR model.

- As we saw earlier, $p\left(R=1 \mid \mathrm{pa}_{\mathcal{G}}(R)\right)$ is easily identifiable as follows:

$$
p\left(R=1 \mid \operatorname{pa}_{\mathcal{G}}(R)\right)=p\left(R_{1}=1\right) \times p\left(R_{2}=1 \mid R_{1}=1, L_{1}\right) .
$$

Therefore, the target law is identified. However, the odds ratio parameterization approach fails here.

Part 3. Non/Semi-parametric Estimation

General Theory of Estimation

- Let $L^{(1)}$ be the full data
- Let R be missingness indicators ($R=1$ is no missingness)
- $C=\left(R, L^{(1)}\right)$ be the complete data
- Let $\varphi_{r}\left(L^{(1)}\right)$ be the components of $L^{(1)}$ when $R=r$
- $\varphi_{1}\left(L^{(1)}\right)=L^{(1)}$
- Let $O=\left(R, \varphi_{R}\left(L^{(1)}\right)\right.$ be the observed data
- We assume $P\left[R=1 \mid L^{(1)}\right]>0$
- Let $F_{L^{(1)}}$ represent the model for $L^{(1)}$, indexed by parameters μ (scalar target parameter) and θ (nuisance)
- Let $F_{R \mid L^{(1)}}$ represent the model for $R \mid L^{(1)}$, indexed by parameters η (nuisance)

General Theory of Estimation

- Let $\Lambda_{1}=\Lambda\left(F_{L^{(1)}}\right)$ be the collection of nuisance scores for θ based on observation of C
- Let $\Lambda_{2}=\Lambda\left(F_{R \mid L^{(1)}}\right)$ be the collection of nuisance scores for η based on observation of C
- Let $\Lambda_{j}^{O}=\overline{R\left(g \cdot \Pi_{j}\right)}$ where
- Π_{j} is a projection operator that maps from C to Λ_{j} and
- $g(\cdot)=E[\cdot \mid O]$.
- $\Lambda^{O}=\overline{\Lambda_{1}^{O}+\Lambda_{2}^{O}}$
- $\Lambda^{O, \perp}=\Lambda_{1}^{O, \perp} \cap \Lambda_{2}^{O, \perp}$
- Influence functions (up to a normalizing constant) for regular and asymptotically linear (RAL) estimator of μ live in $\Lambda^{O, \perp}$
- A RAL estimator $\widehat{\mu}$ of μ^{*} has the property that

$$
\sqrt{n}\left(\widehat{\mu}-\mu^{*}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \underbrace{\psi\left(O_{i} ; \mu^{*}, \theta^{*}, \eta^{*}\right)}_{\text {Influence Function }}+o_{P}(1)
$$

General Theory of Estimation

- Consider $W\left(O ; \mu^{*}, \theta^{*}, \eta^{*}\right) \in \Lambda^{O, \perp}$.
- Let $\widehat{\theta}$ and $\widehat{\eta}$ be estimators for θ and η, respectively.
- Estimate $\widehat{\mu}$ as the solution to

$$
\sum_{i=1}^{n} W\left(O_{i} ; \mu, \widehat{\theta}, \widehat{\eta}\right)=0
$$

- Under regularity conditions on the rate of convergence of $\widehat{\theta}$ and $\hat{\eta}, \widehat{\mu}$ will be RAL with influence function

$$
\left\{\frac{\partial E\left[W\left(O ; \mu^{*}, \theta^{*}, \eta^{*}\right)\right]}{\partial \mu}\right\}^{-1} W\left(O ; \mu^{*}, \theta^{*}, \eta^{*}\right)
$$

- Could also use profile estimators $\widehat{\theta}(\mu)$ and $\widehat{\eta}(\mu)$ and estimate $\widehat{\mu}$ as the solution to

$$
\sum_{i=1}^{n} W\left(O_{i} ; \mu, \widehat{\theta}(\mu), \widehat{\eta}(\mu)\right)=0
$$

General Theory of Estimation

$$
\begin{gathered}
\Lambda_{1}^{O, \perp}=\left\{\frac{I(R=1)}{P\left[R=1 \mid L^{(1)}\right]} a\left(L^{(1)}\right)+b(O): a\left(L^{(1)}\right) \in \Lambda_{1}^{\perp}, E\left[b(O) \mid L^{(1)}\right]=0\right\} \\
\Lambda_{2}^{O, \perp}=\left\{b(O): b(O) \in \Lambda_{2}^{\perp}\right\}
\end{gathered}
$$

Plan:

- Write out an expression for the elements of $\Lambda_{1}^{O, \perp}$
- Find restrictions on these elements to ensure orthogonality to Λ_{2}

Application of General Theory of Estimation

- Let $L^{(1)}=\left(L_{1}^{(1)}, L_{2}^{(1)}\right)$
- Let $R=\left(R_{1}, R_{2}\right)$
- Let $\pi_{i j}\left(L^{(1)}\right)=P\left[R_{1}=i, R_{2}=j \mid L^{(1)}\right]$

Any observed data random variable can we written as
$b(O)=R_{1} R_{2} c_{11}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right) c_{10}\left(L_{1}^{(1)}\right)+\left(1-R_{1}\right) R_{2} c_{01}\left(L_{2}^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right) c_{00}$
What restrictions are $c_{11}\left(L_{1}^{(1)}, L_{2}^{(1)}\right), c_{10}\left(L_{1}^{(1)}\right), c_{01}\left(L_{2}^{(1)}\right)$ and c_{00} ensure that the $E\left[b(O) \mid L^{(1)}\right]=0$

$$
c_{11}\left(L^{(1)}\right)=\frac{-\pi_{10}\left(L^{(1)}\right) c_{10}\left(L_{1}^{(1)}\right)-\pi_{01}\left(L^{(1)}\right) c_{01}\left(L_{2}^{(1)}\right)-\pi_{00}\left(L^{(1)}\right) c_{00}}{\pi_{11}\left(L^{(1)}\right)}
$$

Application of General Theory of Estimation

Any observed data random variable that has mean zero given $L^{(1)}$ can be expressed as

$$
\begin{aligned}
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\} c_{10}\left(L_{1}^{(1)}\right)+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\} c_{01}\left(L_{2}^{(1)}\right)+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{00}\left(L^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\right\} c_{00}
\end{aligned}
$$

Application of General Theory of Estimation

- Let $\mu=E\left[h\left(L^{(1)}\right)\right]$ for a specified function $h(\cdot)$
- Suppose no restrictions are placed on the distribution of $L^{(1)}$
- Let $\Lambda_{1, \dagger}$ be the nuisance tangent space under no-restrictions.
- The elements of $\Lambda_{1, \dagger}^{\perp}$ will be proportional to $h\left(L^{(1)}\right)-\mu$
- If there are restrictions placed on the distribution of $L^{(1)}$, then $\Lambda_{1, \uparrow}^{\perp} \subset \Lambda_{1}^{\perp}$.
- Thus, $h\left(L^{(1)}\right)-\mu \in \Lambda_{1}^{\perp}$.

Application of General Theory of Estimation

We will work with

$$
\begin{aligned}
\Lambda_{1, \dagger}^{O, \perp}= & \left\{\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\}\right. \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\} c_{10}\left(L_{1}^{(1)}\right)+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\} c_{01}\left(L_{2}^{(1)}\right)+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{00}\left(L^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\right\} c_{00}: \\
& \left.c_{10}\left(L_{1}^{(1)}\right), c_{01}\left(L_{2}^{(1)}\right), c_{00}\right\}
\end{aligned}
$$

Block-Parallel Model

$$
\begin{gathered}
\pi_{j k}\left(L^{(1)}\right)=\pi_{1}\left(L_{2}^{(1)}\right)^{j}\left\{1-\pi_{1}\left(L_{2}^{(1)}\right)\right\}^{1-j} \pi_{2}\left(L_{1}^{(1)}\right)^{k}\left\{1-\pi_{2}\left(L_{1}^{(1)}\right)\right\}^{1-k} \\
\left.\left.\left.\Lambda_{2}=\left\{\left\{R_{1}-\pi_{1}\left(L_{2}^{(1)}\right)\right\} g_{1}\left(L_{2}^{(1)}\right)\right)+\left\{R_{2}-\pi_{2}\left(L_{1}^{(1)}\right)\right\} g_{2}\left(L_{1}^{(1)}\right)\right): g_{1}\left(L_{2}^{(1)}\right)\right), g_{2}\left(L_{1}^{(1)}\right)\right\}
\end{gathered}
$$

Block-Parallel Model

What choices of $c_{10}\left(L_{1}^{(1)}\right), c_{01}\left(L_{2}^{(1)}\right), c_{00}$ ensure orthogonality with all elements of Λ_{2} ?

$$
\begin{align*}
E & {\left[\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\}\left\{R_{1}-\pi_{1}\left(L_{2}^{(1)}\right)\right\}+\right.} \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\} c_{10}\left(L_{1}^{(1)}\right)\left\{R_{1}-\pi_{1}\left(L_{2}^{(1)}\right)\right\}+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\} c_{01}\left(L_{2}^{(1)}\right)\left\{R_{1}-\pi_{1}\left(L_{2}^{(1)}\right)\right\}+ \\
& \left.\left.\left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{00}\left(L^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\right\} c_{00}\left\{R_{1}-\pi_{1}\left(L_{2}^{(1)}\right)\right\} \right\rvert\, L_{2}^{(1)}\right]=0 \tag{1}
\end{align*}
$$

Block-Parallel Model

$$
\begin{align*}
E & {\left[\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\}\left\{R_{2}-\pi_{2}\left(L_{1}^{(1)}\right)\right\}+\right.} \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\} c_{10}\left(L_{1}^{(1)}\right)\left\{R_{2}-\pi_{2}\left(L_{1}^{(1)}\right)\right\}+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\} c_{01}\left(L_{2}^{(1)}\right)\left\{R_{2}-\pi_{2}\left(L_{1}^{(1)}\right)\right\}+ \\
& \left.\left.\left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{00}\left(L^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\right\} \operatorname{coo}\left\{R_{2}-\pi_{2}\left(L_{1}^{(1)}\right)\right\} \right\rvert\, L_{1}^{(1)}\right]=0 \tag{2}
\end{align*}
$$

Block-Parallel Model

(1) implies that
(2) implies that

$$
c_{10}\left(L_{1}^{(1)} ; c_{00}\right)=\underbrace{\frac{E\left[h\left(L^{(1)}\right)-\mu \mid L_{1}^{(1)}\right]}{E\left[\pi_{1}\left(L_{2}^{(1)}\right) \mid L_{1}^{(1)}\right]}}_{c_{10}\left(L_{1}^{(1)}\right)}-\underbrace{\frac{E\left[1-\pi_{1}\left(L_{2}^{(1)}\right) \mid L_{1}^{(1)}\right]}{E\left[\pi_{1}\left(L_{2}^{(1)}\right) \mid L_{1}^{(1)}\right]}}_{c_{10}^{\prime}\left(L_{1}^{(1)}\right)} c_{00}
$$

So, $\Lambda^{O, \perp}$ contains a collection of elements indexed by c_{00}.

Block-Parallel Model

We will work with

$$
\begin{aligned}
& \frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\}+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\}\left\{c_{10}\left(L_{1}^{(1)}\right)-c_{10}^{\prime}\left(L_{1}^{(1)}\right) c_{00}\right\}+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\}\left\{c_{01}\left(L_{2}^{(1)}\right)-c_{01}^{\prime}\left(L_{2}^{(1)}\right) c_{00}\right\}+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{00}\left(L^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\right\} c_{00}
\end{aligned}
$$

Block-Parallel Model

Need estimators for

- $\pi_{1}\left(L_{2}^{(1)}\right)$
- $\pi_{2}\left(L_{1}^{(1)}\right)$
$-E\left[\pi_{2}\left(L_{1}^{(1)}\right) \mid L_{2}^{(1)}\right]$
$-E\left[\pi_{1}\left(L_{2}^{(1)}\right) \mid L_{1}^{(1)}\right]$
$-E\left[h\left(L^{(1)}\right) \mid L_{1}^{(1)}\right]$
- $E\left[h\left(L^{(1)}\right) \mid L_{2}^{(1)}\right]$

Block-Parallel Model

To find the optimal choice of c_{00}, minimize

$$
\begin{aligned}
& E\left[\left\{\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\}+\right.\right. \\
&\left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\}\left\{c_{10}\left(L_{1}^{(1)}\right)-c_{10}^{\prime}\left(L_{1}^{(1)}\right) c_{00}\right\}+ \\
&\left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\}\left\{c_{01}\left(L_{2}^{(1)}\right)-c_{01}^{\prime}\left(L_{2}^{(1)}\right) c_{00}\right\}+ \\
&\left.\left.\left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{00}\left(L^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\right\} c_{00}\right\}^{2}\right]
\end{aligned}
$$

Block-Parallel Model

Set derivative with respect to c_{00} equal to zero.

$$
\begin{aligned}
& E\left[\left\{\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\}+\right.\right. \\
& \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\}\left\{c_{10}\left(L_{1}^{(1)}\right)\right\}+ \\
& \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\}\left\{-c_{10}^{\prime}\left(L_{1}^{(1)}\right) c_{00}\right\}+ \\
& \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\}\left\{c_{01}\left(L_{2}^{(1)}\right)\right\}+ \\
& \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\}\left\{-c_{01}^{\prime}\left(L_{2}^{(1)}\right) c_{00}\right\}+ \\
& \left\{\left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{00}\left(L^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\right\} c_{00}\right\} \times \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\}\left\{-c_{10}^{\prime}\left(L_{1}^{(1)}\right)\right\}+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\}\left\{-c_{01}^{\prime}\left(L_{2}^{(1)}\right)\right\}+ \\
&
\end{aligned}
$$

Block-Parallel Model

$$
c_{00}=\frac{a}{b}
$$

where

$$
\begin{aligned}
b= & -E\left[\left\{\frac{\pi_{10}\left(L^{(1)}\right)}{\pi_{11}\left(L^{(1)}\right)}+1\right\} \pi_{10}\left(L^{(1)}\right)\left\{c_{10}^{\prime}\left(L_{1}^{(1)}\right)\right\}^{2}\right]- \\
& E\left[\left\{\frac{\pi_{10}\left(L^{(1)}\right) \pi_{01}\left(L^{(1)}\right)}{\pi_{11}\left(L^{(1)}\right)}\right\}\left\{2 c_{10}^{\prime}\left(L_{1}^{(1)}\right) c_{01}^{\prime}\left(L_{2}^{(1)}\right)\right\}\right]+ \\
& E\left[\left\{\frac{\pi_{10}\left(L^{(1)}\right) \pi_{00}\left(L^{(1)}\right)}{\pi_{11}\left(L^{(1)}\right)}\right\}\left\{2 c_{10}^{\prime}\left(L_{1}^{(1)}\right)\right\}\right]- \\
& E\left[\left\{\frac{\pi_{01}\left(L^{(1)}\right)}{\pi_{11}\left(L^{(1)}\right)}+1\right\} \pi_{01}\left(L^{(1)}\right)\left\{c_{01}^{\prime}\left(L_{2}^{(1)}\right)\right\}^{2}\right]+ \\
& E\left[\left\{\frac{\pi_{01}\left(L^{(1)}\right) \pi_{00}\left(L^{(1)}\right)}{\pi_{11}\left(L^{(1)}\right)}\right\}\left\{2 c_{01}^{\prime}\left(L_{2}^{(1)}\right)\right\}\right]+ \\
& E\left[\left\{\frac{\pi_{00}\left(L^{(1)}\right)}{\pi_{11}\left(L^{(1)}\right)}+1\right\} \pi_{00}\left(L^{(1)}\right)\right]
\end{aligned}
$$

Block-Parallel Model

$$
c_{00}=\frac{a}{b}
$$

where

$$
\begin{aligned}
a= & E\left[\left\{\frac{\pi_{10}\left(L^{(1)}\right)}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\}\right\}\left\{c_{10}^{\prime}\left(L_{1}^{(1)}\right)\right\}\right]+ \\
& E\left[\left\{\frac{\pi_{01}\left(L^{(1)}\right)}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\}\right\}\left\{c_{01}^{\prime}\left(L_{2}^{(1)}\right)\right\}\right]- \\
& E\left[\left\{\frac{\pi_{00}\left(L^{(1)}\right)}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\}\right\}\right]- \\
& E\left[\left\{\frac{\pi_{10}\left(L^{(1)}\right)}{\pi_{11}\left(L^{(1)}\right)}+1\right\} \pi_{10}\left(L^{(1)}\right)\left\{c_{10}\left(L_{1}^{(1)}\right)\right\}\left\{c_{10}^{\prime}\left(L_{1}^{(1)}\right)\right\}\right]- \\
& E\left[\left\{\frac{\pi_{10}\left(L^{(1)}\right) \pi_{01}\left(L^{(1)}\right)}{\pi_{11}\left(L^{(1)}\right)}\right\}\left\{c_{10}\left(L_{1}^{(1)}\right) c_{01}^{\prime}\left(L_{2}^{(1)}\right)+c_{01}\left(L_{2}^{(1)}\right) c_{10}^{\prime}\left(L_{1}^{(1)}\right)\right\}\right]+ \\
& E\left[\left\{\frac{\pi_{10}\left(L^{(1)}\right) \pi_{00}\left(L^{(1)}\right)}{\pi_{11}\left(L^{(1)}\right)}\right\}\left\{c_{10}\left(L_{1}^{(1)}\right)\right\}\right]- \\
& E\left[\left\{\frac{\pi_{01}\left(L^{(1)}\right)}{\pi_{11}\left(L^{(1)}\right)}+1\right\} \pi_{01}\left(L^{(1)}\right)\left\{c_{01}\left(L_{2}^{(1)}\right)\right\}\left\{c_{01}^{\prime}\left(L_{2}^{(1)}\right)\right\}\right]+ \\
& E\left[\left\{\frac{\pi_{01}\left(L^{(1)}\right) \pi_{00}\left(L^{(1)}\right)}{\pi_{11}\left(L^{(1)}\right)}\right\}\left\{c_{01}\left(L_{2}^{(1)}\right)\right\}\right]
\end{aligned}
$$

Block-Conditional Model

$$
\begin{aligned}
\pi_{j k}\left(L^{(1)}\right)= & \pi_{1}^{j}\left\{1-\pi_{1}\right\}^{1-j} \times \\
& \pi_{2}\left(1, L_{1}^{(1)}\right)^{j k}\left\{1-\pi_{2}\left(1, L_{1}^{(1)}\right)\right\}^{j(1-k)} \pi_{2}\left(0, L_{1}^{(1)}\right)^{(1-j) k}\left\{1-\pi_{2}\left(0, L_{1}^{(1)}\right)\right\}^{(1-j)(1-k)}
\end{aligned}
$$

$$
\Lambda_{2}=\left\{\left\{R_{1}-\pi_{1}\right\} g_{1}+R_{1}\left\{R_{2}-\pi_{2}\left(1, L_{1}^{(1)}\right)\right\} g_{2}\left(1, L_{1}^{(1)}\right)+\right.
$$

$$
\left.\left(1-R_{1}\right)\left\{R_{2}-\pi_{2}\left(0, L_{1}^{(1)}\right)\right\} g_{2}\left(0, L_{1}^{(1)}\right): g_{1}, g_{2}\left(1, L_{1}^{(1)}\right), g_{2}\left(0, L_{1}^{(1)}\right)\right\}
$$

Block-Conditional Model

What choices of $c_{10}\left(L_{1}^{(1)}\right), c_{01}\left(L_{2}^{(1)}\right), c_{00}$ ensure orthogonality with all elements of Λ_{2} ?

$$
\begin{align*}
E & {\left[\frac { R _ { 1 } R _ { 2 } } { \pi _ { 1 1 } (L ^ { (1) }) } \{ h (L ^ { (1) }) - \mu \} R _ { 1 } \left\{R_{2}-\pi_{2}\left(1, L_{1}^{(1)}\right)+\right.\right.} \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\} c_{10}\left(L_{1}^{(1)}\right) R_{1}\left\{R_{2}-\pi_{2}\left(1, L_{1}^{(1)}\right)+\right. \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\} c_{01}\left(L_{2}^{(1)}\right) R_{1}\left\{R_{2}-\pi_{2}\left(1, L_{1}^{(1)}\right)+\right. \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{00}\left(L^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\right\} c_{00} R_{1}\left\{R_{2}-\pi_{2}\left(1, L_{1}^{(1)}\right) \mid L_{1}^{(1)}\right]=0 \tag{3}
\end{align*}
$$

Block-Conditional Model

$$
\begin{align*}
E & {\left[\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\}\left(1-R_{1}\right)\left\{R_{2}-\pi_{2}\left(0, L_{1}^{(1)}\right)\right\}+\right.} \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\} c_{10}\left(L_{1}^{(1)}\right)\left(1-R_{1}\right)\left\{R_{2}-\pi_{2}\left(0, L_{1}^{(1)}\right)\right\}+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\} c_{01}\left(L_{2}^{(1)}\right)\left(1-R_{1}\right)\left\{R_{2}-\pi_{2}\left(0, L_{1}^{(1)}\right)\right\}+ \\
& \left.\left.\left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{00}\left(L^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\right\} c_{00}\left(1-R_{1}\right)\left\{R_{2}-\pi_{2}\left(0, L_{1}^{(1)}\right)\right\} \right\rvert\, L_{1}^{(1)}\right]=0 \tag{4}
\end{align*}
$$

Block-Conditional Model

$$
\begin{align*}
E & {\left[\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\}\left\{R_{1}-\pi_{1}\right\}+\right.} \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\} c_{10}\left(L_{1}^{(1)}\right)\left\{R_{1}-\pi_{1}\right\}+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\} c_{01}\left(L_{2}^{(1)}\right)\left\{R_{1}-\pi_{1}\right\}+ \\
& \left.\left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{00}\left(L^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\right\} \operatorname{coo}\left\{R_{1}-\pi_{1}\right\}\right]=0 \tag{5}
\end{align*}
$$

Block-Conditional Model

(4) implies

$$
E\left[c_{01}\left(L_{2}^{(1)}\right) \mid L_{1}^{(1)}\right]=c_{00}
$$

(5) implies

$$
E\left[\pi_{2}\left(0, L_{1}^{(1)}\right) c_{01}\left(L_{2}^{(1)}\right)\right]+c_{00} E\left[1-\pi_{2}\left(0, L_{1}^{(1)}\right)\right]=0
$$

(4) and (5) imply that

$$
c_{00} E\left[\pi_{2}\left(0, L_{1}^{(1)}\right)\right]+c_{00} E\left[1-\pi_{2}\left(0, L_{1}^{(1)}\right)\right]=c_{00}=0
$$

Block-Conditional Model

What choices of $c_{01}\left(L_{2}^{(1)}\right)$ make $E\left[c_{01}\left(L_{2}^{(1)}\right) \mid L_{1}^{(1)}\right]=0$?

- Fredholm integral equation of the first kind.
- Obviously, $c_{01}\left(L_{2}^{(1)}\right)=0$
- Non-trivial choices may or may not exist depending on the conditional distribution of $L_{2}^{(1)}$ given $L_{1}^{(1)}$.
- If the conditional distribution of $L_{2}^{(1)}$ given $L_{1}^{(1)}$ is from a canonical exponential family, then $c_{01}\left(L_{2}^{(1)}\right)=0$ a.s.

Block-Conditional Model

With $C_{01}\left(L_{2}^{(1)}\right)=c_{00}=0,(3)$ implies

$$
c_{10}\left(L_{1}^{(1)}\right)=\frac{E\left[h\left(L^{(1)}\right)-\mu \mid L_{1}^{(1)}\right]}{\pi_{1}}
$$

Block-Conditional Model

We will work with

$$
\begin{aligned}
& \frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\}+\left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\} \frac{E\left[h\left(L^{(1)}\right)-\mu \mid L_{1}^{(1)}\right]}{\pi_{1}} \\
& =\frac{R_{1}}{\pi_{1}}\left\{\frac{R_{2}}{\pi_{2}\left(1, L_{1}^{(1)}\right)} h\left(L^{(1)}\right)+\left(1-\frac{R_{2}}{\pi_{2}\left(1, L_{1}^{(1)}\right)}\right) E\left[h\left(L^{(1)}\right) \mid L_{1}^{(1)}\right]-\mu\right\}
\end{aligned}
$$

Need estimators for
$\Rightarrow \pi_{1}$

- $\pi_{2}\left(1, L_{1}^{(1)}\right)$
$-E\left[h\left(L^{(1)}\right) \mid L_{1}^{(1)}\right]$

Permutation Model

$$
\begin{aligned}
\pi_{j k}\left(L^{(1)}\right)= & \pi_{1}\left(L_{2}^{(1)}\right)^{j}\left\{1-\pi_{1}\left(L_{2}^{(1)}\right)\right\}^{1-j} \times \\
& \pi_{2}\left(1, L_{1}^{(1)}\right)^{j k}\left\{1-\pi_{2}\left(1, L_{1}^{(1)}\right)\right\}^{j(1-k)} \pi_{2}(0)^{(1-j) k}\left\{1-\pi_{2}(0)\right\}^{(1-j)(1-k)}
\end{aligned}
$$

$$
\begin{aligned}
\Lambda_{2}=\{ & \left\{R_{1}-\pi_{1}\left(L_{2}^{(1)}\right)\right\} g_{1}\left(L_{2}^{(1)}\right)+R_{1}\left\{R_{2}-\pi_{2}\left(1, L_{1}^{(1)}\right)\right\} g_{2}\left(1, L_{1}^{(1)}\right)+ \\
& \left.\left(1-R_{1}\right)\left\{R_{2}-\pi_{2}(0)\right\} g_{2}(0): g_{1}\left(L_{2}^{(1)}\right), g_{2}\left(1, L_{1}^{(1)}\right), g_{2}(0)\right\}
\end{aligned}
$$

Permutation Model

What choices of $c_{10}\left(L_{1}^{(1)}\right), c_{01}\left(L_{2}^{(1)}\right), c_{00}$ ensure orthogonality with all elements of Λ_{2} ?

$$
\begin{align*}
E & {\left[\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\}\left\{R_{1}-\pi_{1}\left(L_{2}^{(1)}\right)\right\}+\right.} \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\} c_{10}\left(L_{1}^{(1)}\right)\left\{R_{1}-\pi_{1}\left(L_{2}^{(1)}\right)\right\}+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\} c_{01}\left(L_{2}^{(1)}\right)\left\{R_{1}-\pi_{1}\left(L_{2}^{(1)}\right)\right\}+ \\
& \left.\left.\left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{00}\left(L^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\right\} c_{00}\left\{R_{1}-\pi_{1}\left(L_{2}^{(1)}\right)\right\} \right\rvert\, L_{2}^{(1)}\right]=0 \tag{6}
\end{align*}
$$

Permutation Model

$$
\begin{align*}
E & {\left[\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\} R_{1}\left\{R_{2}-\pi_{2}\left(1, L_{1}^{(1)}\right)\right\}+\right.} \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\} c_{10}\left(L_{1}^{(1)}\right) R_{1}\left\{R_{2}-\pi_{2}\left(1, L_{1}^{(1)}\right)\right\}+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\} c_{01}\left(L_{2}^{(1)}\right) R_{1}\left\{R_{2}-\pi_{2}\left(1, L_{1}^{(1)}\right)\right\}+ \\
& \left.\left.\left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{00}\left(L^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\right\} c_{00} R_{1}\left\{R_{2}-\pi_{2}\left(1, L_{1}^{(1)}\right)\right\} \right\rvert\, L_{1}^{(1)}\right]=0 \tag{7}
\end{align*}
$$

Permutation Model

$$
\begin{align*}
E & {\left[\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)}\left\{h\left(L^{(1)}\right)-\mu\right\}\left(1-R_{1}\right)\left\{R_{2}-\pi_{2}(0)\right\}+\right.} \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\} c_{10}\left(L_{1}^{(1)}\right)\left(1-R_{1}\right)\left\{R_{2}-\pi_{2}(0)\right\}+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\} c_{01}\left(L_{2}^{(1)}\right)\left(1-R_{1}\right)\left\{R_{2}-\pi_{2}(0)\right\}+ \\
& \left.\left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{00}\left(L^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\right\} c_{00}\left(1-R_{1}\right)\left\{R_{2}-\pi_{2}(0)\right\}\right]=0 \tag{8}
\end{align*}
$$

Permutation Model

(8) implies

$$
c_{00}=\frac{E\left[\left\{1-\pi_{1}\left(L_{2}^{(1)}\right)\right\} c_{01}\left(L_{2}^{(1)}\right)\right]}{E\left[\left\{1-\pi_{1}\left(L_{2}^{(1)}\right)\right\}\right]}
$$

(6) implies

$$
c_{01}\left(L_{2}^{(1)}\right)=\frac{E\left[\left\{h\left(L^{(1)}\right)-\mu\right\} \mid L_{2}^{(1)}\right]}{\pi_{2}(0)}-\frac{1-\pi_{2}(0)}{\pi_{2}(0)} c_{00}
$$

Together, this implies that

$$
c_{00}=\frac{E\left[h\left(L^{(1)}\right)\left\{1-\pi_{1}\left(L_{2}^{(1)}\right)\right\}\right]}{E\left[1-\pi_{1}\left(L_{2}^{(1)}\right)\right]}-\mu
$$

and

$$
c_{01}\left(L_{2}^{(1)}\right)=\frac{E\left[h\left(L^{(1)}\right) \mid L_{2}^{(1)}\right]}{\pi_{2}(0)}-\frac{1-\pi_{2}(0)}{\pi_{2}(0)}\left\{\frac{E\left[h\left(L^{(1)}\right)\left\{1-\pi_{1}\left(L_{2}^{(1)}\right)\right\}\right]}{E\left[1-\pi_{1}\left(L_{2}^{(1)}\right)\right]}\right\}-\mu
$$

Permutation Model

Adding (7) implies

$$
c_{10}\left(L_{1}^{(1)}\right)=\frac{E\left[h\left(L^{(1)}\right)-E\left[h\left(L^{(1)}\right) \mid L_{2}^{(1)}\right] \mid L_{1}^{(1)}\right]}{E\left[\pi_{1}\left(L_{2}^{(1)}\right) \mid L_{1}^{(1)}\right]}+\frac{E\left[\pi_{1}\left(L_{2}^{(1)}\right) E\left[h\left(L^{(1)}\right) \mid L_{2}^{(1)}\right] \mid L_{1}^{(1)}\right]}{E\left[\pi_{1}\left(L_{2}^{(1)}\right) \mid L_{1}^{(1)}\right]}-\mu
$$

Permutation Model

We will work with

$$
\begin{aligned}
& \frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} h\left(L^{(1)}\right)+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{10}\left(L^{(1)}\right)+R_{1}\left(1-R_{2}\right)\right\} \times \\
& \left\{\frac{E\left[h\left(L^{(1)}\right)-E\left[h\left(L^{(1)}\right) \mid L_{2}^{(1)}\right] \mid L_{1}^{(1)}\right]}{E\left[\pi_{1}\left(L_{2}^{(1)}\right) \mid L_{1}^{(1)}\right]}+\frac{E\left[\pi_{1}\left(L_{2}^{(1)}\right) E\left[h\left(L^{(1)}\right) \mid L_{2}^{(1)}\right] \mid L_{1}^{(1)}\right]}{E\left[\pi_{1}\left(L_{2}^{(1)}\right) \mid L_{1}^{(1)}\right]}\right\}+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{01}\left(L^{(1)}\right)+\left(1-R_{1}\right) R_{2}\right\} \times \\
& \\
& \left\{\frac{E\left[h\left(L^{(1)}\right) \mid L_{2}^{(1)}\right]}{\pi_{2}(0)}-\frac{1-\pi_{2}(0)}{\pi_{2}(0)}\left\{\frac{E\left[h\left(L^{(1)}\right)\left\{1-\pi_{1}\left(L_{2}^{(1)}\right)\right\}\right]}{E\left[1-\pi_{1}\left(L_{2}^{(1)}\right)\right]}\right\}\right\}+ \\
& \left\{-\frac{R_{1} R_{2}}{\pi_{11}\left(L^{(1)}\right)} \pi_{00}\left(L^{(1)}\right)+\left(1-R_{1}\right)\left(1-R_{2}\right)\right\} \times \\
& \left\{\frac{E\left[h\left(L^{(1)}\right)\left\{1-\pi_{1}\left(L_{2}^{(1)}\right)\right\}\right]}{E\left[1-\pi_{1}\left(L_{2}^{(1)}\right)\right]}\right\}-\mu
\end{aligned}
$$

Permutation Model

Need estimators for

- $\pi_{2}(0)$
- $\pi_{2}\left(1, L_{1}^{(1)}\right)$
- $\pi_{1}\left(L_{2}^{(1)}\right)$
- Conditional means of functions of $L_{2}^{(1)}$ given $L_{1}^{(1)}$ and conditional means of functions of $L_{1}^{(1)}$ given $L_{2}^{(1)}$
- $E\left[h\left(L^{(1)}\right) \mid L_{1}^{(1)}\right]$
- $E\left[h\left(L^{(1)}\right) \mid L_{2}^{(1)}\right]$
- $E\left[\pi_{1}\left(L_{2}^{(1)}\right) \mid L_{1}^{(1)}\right]$
- $E\left[\pi_{1}\left(L_{2}^{(1)}\right) E\left[h\left(L^{(1)}\right) \mid L_{2}^{(1)}\right] \mid L_{1}^{(1)}\right]$
- $\left.E\left[E\left[h\left(L^{(1)}\right) \mid L_{2}^{(1)}\right] \mid L_{1}^{(1)}\right]\right]$

Wrap up

Revisiting course outline and objectives

Part I. Missing data DAGs

- Represented missingness mechanisms graphically; interpreted a missing data DAG model as a class of distributions with a set of independence restrictions.

Part II. Non-parametric identification

- Discussed identification tricks for full and target laws, and showed how non-identification proofs go.

Part III. Non/Semi-parametric estimation

- Given and identified query, derived the non-parametric influence functions; Given three types of m-DAGs with MNAR missingness, derived the tangent space of the underlying full data and observed data distributions.

Part IV. Sensitivity analysis

- Assessing deviations from assumptions.

General questions and thoughts

1. How can identification results guide estimation strategies?
2. What if there exist variables that are not just missing but completely unobserved?
3. Similar to DAGs, absence of an edge in an m-DAG implies a restriction of the form $A \perp B \mid C$. Is this restriction testable from observed finite samples?
4. What if the model is not nonparametrically identified?

I. Estimation strategies (weighted estimating equations)

- How identification results can guide estimation strategies?

(Permutation model)
- Let our parameter of interest be $\beta_{h}=\mathbb{E}\left[h\left(L_{1}^{(1)}, L_{2}^{(1)}\right)\right]$, which can rewritten as:

$$
\beta_{h}=\mathbb{E}\left[\frac{R_{1} R_{2}}{p\left(R_{1}=1 \mid L_{2}^{(1)}\right) p\left(R_{2}=1 \mid R_{1}=1, L_{1}\right)} \times h\left(L_{1}^{(1)}, L_{2}^{(1)}\right)\right] .
$$

$p\left(R_{1}=1 \mid L_{2}^{(1)}\right)$ is identified from an intervention distribution where R_{2} is intervened on:

$$
p\left(R_{1}=1 \mid L_{2}^{(1)}\right)=p\left(R_{1}=1 \mid L_{2}, d o\left(R_{2}=1\right)\right)
$$

- How does identification of $p\left(R_{1}=1 \mid L_{2}^{(1)}\right)$ help with estimation? Assume $p\left(R_{1}=1 \mid L_{2}^{(1)}\right)=p\left(R_{1}=1 \mid L_{2}^{(1)} ; \alpha\right), \alpha \in \mathbb{R}^{p}$ and $\mathbb{E}\left[U\left(R_{1}, L_{2}^{(1)} ; \alpha\right)\right]=0$, then:

$$
\mathbb{E}\left[\frac{R_{2}}{p\left(R_{2} \mid R_{1}, L_{1}\right)} \times U\left(R_{1}, L_{2}^{(1)} ; \alpha\right)\right]=0 .
$$

I. Estimation strategies (EIF derivation)

$$
\begin{aligned}
\beta_{h} & =\mathbb{E}\left[h\left(L_{1}^{(1)}, L_{2}^{(1)}\right)\right] \\
& =\mathbb{E}\left[\frac{R_{1} R_{2}}{p\left(R_{1}=1 \mid L_{2}^{(1)}\right) p\left(R_{2}=1 \mid R_{1}=1, L_{1}\right)} \times h\left(L_{1}^{(1)}, L_{2}^{(1)}\right)\right]
\end{aligned}
$$

- A more reasonable estimator for β_{h} is the estimator derived based on the nonparametric efficient influence function (EIF).
- The core idea of deriving the EIF for β_{h} is to use an intermediate variable that first takes care of the missingness of $L_{1}^{(1)}$, and then $L_{2}^{(1)}$ in a sequential manner

$$
\begin{aligned}
\widetilde{\beta}_{h}\left(L_{2}^{(1)}\right) & =\frac{R_{1}}{p\left(R_{1}=1 \mid L_{2}^{(1)}\right)} \times h\left(L_{1}^{(1)}, L_{2}^{(1)}\right) \\
\beta_{h} & =\mathbb{E}\left[\frac{R_{2}}{p\left(R_{2}=1 \mid R_{1}=1, L_{1}\right)} \times \widetilde{\beta}_{h}\left(L_{2}^{(1)}\right)\right]
\end{aligned}
$$

II. Missing data DAGs with hidden variables

- What if there exist variables that are not just missing but completely unobserved?
- Summarize the observed data distribution with a missing data acyclic directed mixed graph (ADMG).

(a) $\mathcal{G}(V, U)$

(b) $\mathcal{G}(V)$
$L_{1}^{(1)}$: smoking, $L_{2}^{(1)}$: lung cancer
U_{1} : genotypic traits, U_{2} : occupation, U_{3} : ethnicity
- Identification results are extended to to missing data ADMGs, and results remain complete for full law identification (Nabi et al., 2020).

III. Testable implications in m-DAGs

- Similar to DAGs, absence of an edge in an m-DAG implies a restriction of the form $A \perp B \mid C$. Is this restriction testable from observed finite samples?
- If all the restrictions encoded in a missing data DAG are provably untestable (i.e., no restriction on the observed data law), the full law Markov relative to the DAG is said to be non-parametric saturated (Robins; 1997)
- A self-censoring mechanism imposes no restriction on the observed data law
- Another example of a non-parametric saturated model is the permutation model.
- Submodels of a non-parametric saturated model can still be tested using partially observed data (Nabi and Bhattacharya, 2022).

III. Testable implications

MAR model

Permutation supermodel

- Is $R_{1} \Perp L_{2}^{(1)}$?
- Fit $p\left(R_{1}\right)$ and $p\left(R_{1} \mid L_{2}^{(1)}\right)$ and compare the goodness of fits
- Use a weighted estimating equation to fit $p\left(R_{1} \mid L_{2}^{(1)} ; \alpha\right)$

$$
\mathbb{P}_{n}\left[\frac{R_{2}}{p\left(R_{2} \mid R_{1}, L_{1}\right)} \times U(. ; \alpha)\right]=0
$$

where $\mathbb{P}_{n}[U(. ; \alpha)]=0$ with respect to the full law.

IV. Missing data non-identification

- What if a parameter of interest is not identified from the observed data law?

Self-censoring $p\left(L^{(1)}\right)$ not ID.

Colluder
$p\left(L^{(1)}, R\right)$ not ID.

Criss-cross
$p\left(L^{(1)}\right)$ not ID.

- Generally speaking, we have two general options:
- Restrict the missing data model by posing extra assumptions on the full law.
- Obtain bounds, conduct sensitivity analysis, etc. (Rotnitzky et al., 1998; Robins et al., 2000; Scharfstein and Irizarry, 2003)

IV. Partial/parametric identification

$p\left(L_{1}^{(1)}, L_{2}^{(1)}\right)$ is not identified.
Criss-cross structure

- Partial identification: $p\left(L_{1}^{(1)} \mid L_{2}^{(1)}\right)$ and $\operatorname{OR}\left(L_{1}^{(1)}, L_{2}^{(1)}\right)$ are identified.
- We can test $L_{1}^{(1)} \Perp L_{2}^{(1)}$ without further assumptions.
- Under what conditions $p\left(L_{1}^{(1)}, L_{2}^{(1)}\right)$ is identified? assume $p\left(L_{1}^{(1)}\right)$ and $p\left(L_{2}^{(1)} \mid L_{1}^{(1)}\right)$ follow exponential family distributions:

$$
\begin{aligned}
L_{1}^{(1)} \sim \exp \left\{\frac{l_{1}^{(1)} \eta_{l_{1}}-b_{l_{1}}\left(\eta_{l_{1}}\right)}{\Phi_{l_{1}}}+c_{l_{1}}\left(l_{1} ; \Phi_{l_{1}}\right)\right\} \\
L_{2}^{(1)} \left\lvert\, L_{1}^{(1)} \sim \exp \left\{\frac{l_{2}^{(1)} \eta-b(\eta)}{\Phi}+c\left(l_{2}^{(1)} ; \Phi\right)\right\}\right., \quad g(\mu(\eta))=\alpha+\beta l_{1}^{(1)} .
\end{aligned}
$$

- What are sufficient conditions for target law ID in the above class of distributions? (Guo et al., 2023)

IV. Alternative handling of non-identified models

$$
\begin{aligned}
& p\left(L^{(1)}\right)=\sum_{r \in\{0,1\}}^{L^{(1)}} p\left(L^{(1)}, R=r\right) \\
&= p\left(L^{(1)} \mid R=0\right) \times p(R=0)+p\left(L^{(1)} \mid R=1\right) \times p(R=1) \\
& p\left(L^{(1)} \mid R=0\right) \propto p\left(L^{(1)} \mid R=1\right) \times \exp \left(\gamma S\left(L^{(1)}\right)\right)
\end{aligned}
$$

- The relation is controlled by the sensitivity parameter γ.
- $S\left(L^{(1)}\right)$ is a specified function of $L^{(1)}$.

Many interesting open problems

- Missing data DAGs with or without unmeasured confounding:
- A concise and precise representation of MNAR mechanisms.
- Identification:
- Complete characterization of target law ID remains an open problem while such characterizations for full law ID exist.
- Partial identification.
- Estimation:
- Intuitive estimation strategies: IPW-style estimators
- An understudied research area: influence-function based estimations in m-DAGs.
- Testable implications:
- Data-driven structure learning approaches.

Ananke: Software for causal inference

ananke-causal:

A python package for causal inference using the language of graphical models.

Highlights:

- Identification algorithms
- Semiparametric inference
- Surrogate experiments
- Missing data

Links:

- Documentation:
https://ananke.readthedocs.io/en/latest/index.html
- Gitlab repository: https://gitlab.com/causal/ananke
- Python package index: https://pypi.org/project/ananke-causal/

Contributors: Rohit Bhattacharya, Jaron Lee, and RN

Acknowledgments

In alphabetical order:

- Rohit Bhattacharya, Ph.D., Williams College
- Anna Guo, Emory University
- James Robins, Ph.D., Harvard School of Public Health
- Dan Scharfstein, Sc.D., University of Utah
- Ilya Shpitser, Ph.D., Johns Hopkins University
- Jiwei Zhao, Ph.D., University of Wisconsin-Madison
- Inspired by works of Judea Pearl, Karthika Mohan, Jin Tian, Eric Tchetgen Tchetgen, Daniel Malinsky, and many more.

References I

R. Bhattacharya, R. Nabi, I. Shpitser, and J. Robins. Identification in missing data models represented by directed acyclic graphs. In Proceedings of the Thirty Fifth Conference on Uncertainty in Artificial Intelligence (UAI-35th). AUAI Press, 2019.
R. Bhattacharya, R. Nabi, and I. Shpitser. Semiparametric inference for causal effects in graphical models with hidden variables. Journal of Machine Learning Research, 23: 1-76, 2022.
H. Y. Chen. A semiparametric odds ratio model for measuring association. biometrics, 63:413-421, 2007.
A. Guo, J. Zhao, and R. Nabi. Semiparametric identifiability and estimation under missing not at random mechanisms, 2023.
Y. Huang and M. Valtorta. Pearl's calculus of interventions is complete. In Twenty Second Conference On Uncertainty in Artificial Intelligence, 2006.
D. Malinsky, I. Shpitser, and E. J. Tchetgen Tchetgen. Semiparametric inference for nonmonotone missing-not-at-random data: the no self-censoring model. Journal of the American Statistical Association, pages 1-9, 2021.
K. Mohan, J. Pearl, and J. Tian. Graphical models for inference with missing data. In Advances in Neural Information Processing Systems 26, pages 1277-1285. Curran Associates, Inc., 2013.

References II

R. Nabi and R. Bhattacharya. On testability and goodness of fit tests in missing data models. arXiv preprint arXiv:2203.00132, 2022.
R. Nabi, R. Bhattacharya, and I. Shpitser. Full law identification in graphical models of missing data: Completeness results. In Proceedings of the Twenty Seventh International Conference on Machine Learning (ICML-20), 2020.
R. Nabi, R. Bhattacharya, I. Shpitser, and J. Robins. Causal and counterfactual views of missing data models. arXiv preprint arXiv:2210.05558, 2022.
J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000. ISBN 0-521-77362-8.
T. S. Richardson, R. J. Evans, J. M. Robins, and I. Shpitser. Nested markov properties for acyclic directed mixed graphs. arXiv preprint arXiv:1701.06686, 2017.
J. M. Robins. Non-response models for the analysis of non-monotone non-ignorable missing data. Statistics in Medicine, 16:21-37, 1997.
J. M. Robins, A. Rotnitzky, and D. O. Scharfstein. Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. In Statistical models in epidemiology, the environment, and clinical trials, pages 1-94. Springer, 2000.

References III

A. Rotnitzky, J. M. Robins, and D. O. Scharfstein. Semiparametric regression for repeated outcomes with nonignorable nonresponse. Journal of the american statistical association, 93(444):1321-1339, 1998.
D. B. Rubin. Causal inference and missing data (with discussion). Biometrika, 63: 581-592, 1976.
M. Sadinle and J. P. Reiter. Itemwise conditionally independent nonresponse modelling for incomplete multivariate data. Biometrika, 104(1):207-220, 2017.
D. O. Scharfstein and R. A. Irizarry. Generalized additive selection models for the analysis of studies with potentially nonignorable missing outcome data. Biometrics, 59(3):601-613, 2003.
I. Shpitser. Consistent estimation of functions of data missing non-monotonically and not at random. In Proceedings of the Thirtieth Annual Conference on Neural Information Processing Systems (NIPS-16). Curran Associates, Inc., 2016.
I. Shpitser and J. Pearl. Identification of joint interventional distributions in recursive semi-Markovian causal models. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI-06). AAAI Press, Palo Alto, 2006.
R. Srinivasan, R. Bhattacharya, R. Nabi, E. L. Ogburn, and I. Shpitser. Graphical models of entangled missingness. arXiv preprint arXiv:2304.01953, 2023.

References IV

T. S. Verma and J. Pearl. Equivalence and synthesis of causal models. Technical Report R-150, Department of Computer Science, University of California, Los Angeles, 1990.
Y. Zhou, R. J. A. Little, and K. J. D. Block-conditional missing at random models for missing data. Statistical Science, 25(4):517-532, 2010.

Razieh Nabi, Ph.D.

Rollins Assistant Professor
Department of Biostatistics and Bioinformatics
Rollins School of Public Health
Emory University
Y ©raziehnabi

- razieh.nabi@emory.edu

ヘ https://raziehnabi.com

Daniel Scharfstein, Sc.D.

Chief of the Division of Biostatistics
Department of Population Health Sciences
School of Medicine
University of Utah

- @dscharf3
- Daniel.Scharfstein@hsc.utah.edu

ヘ https://medicine.utah.edu/dscharf

Slides are available at: https://raziehnabi.com/files/acic_miss.pdf Upon using the materials, please cite appropriately.

