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Course outline

Motivation (∼10 minutes)

Part I. Missing data DAG models (∼75 minutes)

Break (10 minutes)

Part II. Non-parametric identification (∼75 minutes)

Break (10 minutes)

Part III. Non/Semi-parametric estimation (∼75 minutes)

Wrap-up (∼15 minutes)
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Motivation

▶ We are often interested in a functional of an underlying distribution:

▶ Population-level outcome Y : ψ1 = E[Y ].
▶ Outcome mean in a sub-population X = x : ψ2 = E[Y | X = x ].
▶ Average causal effect of binary treatment T on outcome Y :

ψ3 = E
[
E
[
Y

∣∣ X ,T = 1
]
− E

[
Y

∣∣ X ,T = 0
]]
.

(Note that ψ3 can only be interpreted as a causal effect under certain
assumptions, such as consistency, positivity, and conditional ignorability.)

▶ How to compute these estimands?
▶ We need samples from the underlying distribution, {X ,T ,Y } ∼ p(X ,T ,Y )

3/110



Missing data indicators

▶ We look at the observed sample and it looks like the following:
X∗ T ∗ Y ∗

x1 t1 ?
x2 ? y2
x3 t3 y3
...

...
...

? tn ?

▶ Each variable with missing values can have an underlying missingness/response
indicator:

▶ RV = 1 if variable V is observed and RV = 0 if V is “?”.

X∗ T ∗ Y ∗ RX RT RY
x1 t1 ? 1 1 0
x2 ? y2 1 0 1
x3 t3 y3 1 1 1
...

...
...

...
...

...
? tn ? 0 1 0
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Missing data challenges

▶ How to use data with missing values to estimate the parameter of interest?
▶ Should we ignore rows with missing values?
▶ Should we impute the missing values? If so, how?
▶ Should we do something else?

▶ Our choices may affect our data analysis by
▶ introducing bias due to differences between missing and complete data,

and/or
▶ losing efficiency when we ignore part of the observed sample.

▶ Before we choose what method to use, we need to know why we have
missing data in the first place!
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Sources of missingness

We encounter missing data for a variety of reasons:

▶ A survey was conducted and values were just randomly missed when being
entered in the computer.

▶ A respondent chooses not to respond to a question like “Have you ever
recreationally used opioids?"

▶ You decide to start collecting a new variable (due to new actions: like a
pandemic) partway through the data collection of a study.

▶ You want to measure the speed of meteors, and some observations are just
“too quick" to be measured properly.

The source of missing values in data leads to three distinct missingness
mechanisms: MCAR, MAR, MNAR (Rubin, 1976).
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Rubin’s hierarchy of missingness

1. Missing Completely at Random (MCAR) - the probability of missingness in
a variable is the same for all units. Like randomly poking holes in a data set.

2. Missing at Random (MAR) - the probability of missingness in a variable
depends only on available information (in other predictors).

3. Missing Not at Random (MNAR) - the probability of missingness depends
on information that has not been recorded and this information also predicts
the missing values.
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Rubin’s hierarchy of missingness

Let Z : variables with no missingness
Let X : variables that are sometimes missing

Xobs: observed entries, Xmiss: missing entries

Let R : missingness indicators

1. MCAR: R ⊥⊥ Xmiss,Xobs,Z , p(R | X ,Z) = p(R).
▶ probability that any observation is missing is independent of all data values,

regardless of whether they are observed or unobserved.

2. MAR: R ⊥⊥ Xmiss | Z ,Xobs, p(R | X ,Z) = p(R | Z ,Xobs)
▶ probability that any observation is missing depends only on elements that

are observed.

3. MNAR: R ⊥̸⊥ Xmiss neither marginally nor conditionally
▶ probability that any observation is missing depends on elements that are

themselves missing – a missingness mechanism that is neither MCAR nor
MAR.
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Beyond the traditional missingness hierarchy

▶ Rubin’s categorization, although provides a foundational framework, falls
short in several aspects:

▶ MCAR and MAR definitions are merely statistical convenience.
▶ MNAR definition lacks specificity.
▶ It does not determine the best approach for handling missing data in

multiple variables.

▶ In order to better handle missing data, we need to:

▶ Have a better understanding of causal relationships between variables and
their missingness, and what these relationships imply in terms of
identification/recoverability of the target estimand.

▶ Main takeaway: encourage the use of missing data DAGs in data analysis to

▶ Make assumptions about missingness mechanisms more explicit, and

▶ Use identification procedures as a guide for estimation methods.
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Course outline and objectives

Part I. Missing data DAG models
▶ Represent missingness mechanisms graphically; interpret a missing data

DAG model as a class of distributions with a set of independence
restrictions (Markov properties).

Part II. Non-parametric identification
▶ Given a missing data DAG model, argue for identifiability of a given

estimand: write down the estimand as a function of observed data, or prove
its non-identifiability.

Part III. Non/Semi-parametric estimation
▶ Given an identified estimand, derive desirable estimators; Derive the efficient

influence functions.
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Part 1. Missing Data DAG Models



Missing data and causal inference

▶ Causal inference and missing data are analogous in terminology, theory of
identification, and statistical inference.

▶ Causal inference has been viewed as a missing data problem:

▶ Responses to some (hypothetical) treatment interventions are not observed.
▶ Given the treatment vs placebo option, we only observe the potential

outcome under treatment received or the potential outcome under placebo
received, but not both.

▶ Missing data can be viewed as a causal inference problem:

▶ Missingness indicators can be treated as intervenable treatments.
▶ We can view variable X as a potential outcome had the missingness

indicator RX been set to 1 (had there been no missingness).

▶ In this part of the tutorial, we want to use developments in causal graphical
models to reason about missing data models.
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A causal workflow

1. Define a causal estimand in terms of counterfactuals.

2. Define a causal model that links counterfactuals to factual variables.
▶ Impose assumptions on the distribution defined over counterfactual and

factual variables.

3. Identify the causal estimand as a function of observed data in the assumed
causal model.

4. Define a statistical model to estimate the identified causal estimand.
▶ Perform statistical inference which includes testing and estimating the

magnitude of a causal estimand given the observed data.

5. Assess assumptions with sensitivity analysis.
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Example: a causal workflow

1. Average causal effect: ACE := E[Y (1) − Y (0)]

▶ Y (t): potential outcome Y when binary treatment T is assigned to
t = {0, 1}.

2. M: a causal model relating counterfactuals to factuals
▶ Consistency: observed outcome Y is equal to the potential outcome Y (t)

when the treatment received is T = t,
▶ Positivity: p(T = t | X = x) > 0 for all x in the state space of X ,
▶ Conditional ignorability: Y (t) ⊥ T | X .

3. Under the above causal model, we can identify ACE via the following
functional, known as adjustment formula or g-formula:

E[Y (1) − Y (0)] = E
[
E

[
Y

∣∣ T = 1,X
]
− E

[
Y

∣∣ T = 0,X
]]
.

4, 5. Luckily, we are not short of any estimation or sensitivity analysis techniques!
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Directed acyclic graph (DAG)

▶ The second step in the causal workflow is what distinguishes causal inference
from traditional statistical inference.

▶ Graphical models like directed acyclic graphs (DAGs) are often used to
encode assumptions about the causal model.

▶ A graph G(V ,E) is a set of vertices/nodes V that correspond to random
variables and a set E that contains the set of edges between variables.

▶ The graph G(V ,E) is said to be directed and acyclic if:
▶ There are only directed edges (Vi → Vj)
▶ There are no directed cycles – for any Vi ∈ V there is no sequence of

directed edges in G such that Vi → . . .→ Vi

X T Y

✓

X T Y

✗

▶ For notational convenience, we often refer to G(V ,E) as G(V ) or simply G.
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Statistical model of a DAG

▶ DAG G(V ) encodes a set of independence restrictions on the joint
distribution p(V ).

▶ The joint distribution p(V ) corresponding to DAG G(V ) has three
equivalent characterizations:

▶ Factorization (writes the distribution as a set of small factors.)

▶ Local Markov property (lists a complete set of independence constraints.)

▶ Global Markov property (lists all independence constraints in the model.)
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Statistical model of a DAG ctd.

The joint distribution p(V ) satisfies the factorization property wrt DAG G(V ) if:

p(V ) =
∏

Vi ∈V

p(Vi | paG(Vi )),

▶ paG(Vi ) = {Vj ∈ V | Vj → Vi} denotes parents of Vi in G(V ).

The joint distribution p(V ) satisfies the local Markov property wrt DAG G(V ) if:

Vi ⊥⊥ ndG(Vi ) \ paG(Vi ) | paG(Vi ), ∀Vi ∈ V

(Vi is independent of its non-descendants non-parents given its parents)

▶ ndG(Vi ) = {Vj ∈ V | Vj ̸∈ deG(Vi )} denotes non-descendants of Vi in G(V ),

▶ deG(Vi ) = {Vj ∈ V | Vi → . . .→ Vj} denotes descendants of Vi in G(V ).
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Example: statistical model of a DAG

Consider the following DAG: V1

V3

V2

V4

▶ According to the DAG factorization, the statistical model of this DAG is a
set of distributions p(V ), where V = {V1,V2,V3,V4} s.t.,{

p(V ) = p(V1)× p(V2)× p(V3 | V1,V2)× p(V4 | V3)
}
.

▶ According to the local Markov property, the statistical model of this DAG is
a set of distributions p(V ) s.t.,{

p(V ) s.t. V1 ⊥⊥ V2 and V4 ⊥⊥ V1,V2 | V3

}
.

The above list implies a larger set of independence restrictions, e.g.,
V4 ⊥⊥ V1 | V3 or V4 ⊥⊥ V1 | V2,V3. (graphoid axioms)
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Global Markov property: d-separation

▶ Given a DAG G(V ), can we answer arbitrary independence queries of the
form X ⊥⊥ Y | Z in p(V ), where X ,Y ,Z are disjoint subsets of V ?

▶ d-separation (directed-separation) is a graphical criterion that allows one to
answer such queries in an automated fashion (Pearl, 2000; Verma and Pearl,
1990).

▶ Here are the three types of triplets that define d-separation:
▶ Forks X ← Z → Y
▶ Chains X → Z → Y or X ← Z ← Y
▶ Colliders X → Z ← Y
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Fork triplets

In a fork X ← Z → Y , the variables X and Y are marginally dependent, but
conditionally independent given Z .

X

Z

Y

X ⊥̸⊥ Y

X

Z

Y

X ⊥⊥ Y | Z

▶ Intuition: X and Y share a common cause and thus dependent.
▶ Upon observing the common cause Z , the two effects X and Y are no

longer related.

▶ Example: X : shark attacks, Z : warm whether, and Y : ice cream sales.

Warmer weather draws more people to the beach. It also drives up ice cream sales.
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Chain triplets

In a chain X → Z → Y , the variables X and Y are marginally dependent, but
conditionally independent given Z .

X Z Y

X ⊥̸⊥ Y

X Z Y

X ⊥⊥ Y | Z

▶ Intuition: if Z is a noisy version of X and Y is a noisy version of Z , then Y is a
noisy version of X .

▶ Upon observing Z , X holds no extra information about Y .
▶ Z screens off the effect of X on Y .

▶ Example: X : blood sugar, Z : stomach acidity, and Y : hunger.

Blood sugar causes hunger, but only indirectly through increasing the stomach
acidity.
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Collider triplets

In a collider X → Z ← Y , the variables X and Y are marginally independent, but
conditionally dependent given Z .

X

Z

Y

X ⊥⊥ Y

X

Z

Y

X ⊥̸⊥ Y | Z

▶ Intuition: if X and Y only share a common effect, they are independent. That is
the common effect has two independent sources of causes.

▶ Upon observing the common effect, the two causes become dependent.
▶ This is often referred to as a Berkson’s paradox.

▶ Example: X : battery, Z : car starts, and Y : fuel.

If we observe that the car fails to start, then knowing something about the fuel
status tells us something about the battery status & vice versa
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Collider extensions

In a colider X → Z ← Y , the variables X and Y are marginally independent, but
conditionally dependent given a descendant of Z .

X

Z

Y

X ⊥⊥ Y

X

Z

...

D

Y

X ⊥̸⊥ Y | D

▶ Example: X : battery, Z : car starts, Y : fuel, and D: taken to mechanic

Extend the previous example where the car was taken to a mechanic.

▶ Conditioning can induce dependence, not just remove it.
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Summary of the (in)dependence rules

X Z Y

X ⊥̸⊥ Y

X Z Y

X ⊥⊥ Y | Z

X Z Y

X ⊥̸⊥ Y

X Z Y

X ⊥⊥ Y | Z

X Z Y

X ⊥⊥ Y

X Z Y

X ⊥̸⊥ Y | Z

X Z

...

D

Y

X ⊥̸⊥ Y | D

▶ Forks/chains are open, but become blocked upon conditioning.
▶ Colliders are blocked, but become open upon conditioning.
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From blocked triplets to d-separation

▶ A path from X to Y is a sequence of consecutive edges connecting X and Y
such that no node (and consequently no edge) appears more than once in the
sequence.

▶ A path from X to Y is blocked by Z if there is a blocking triplet on the
path.

▶ There exists a blocked chain or fork on the path, or
▶ A collider that is not open.

▶ Dependence is like water flow and paths are pipes. A single block is enough
to block the whole path.

▶ X and Y are d-separated given Z if all paths from X to Y are blocked by Z ,
and is denoted by X ⊥⊥d Y | Z .
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Examples: d-separation

A

B

C

D E

▶ Is A ⊥⊥d E | C?

No! because A→ B → D → E is still open.

▶ Is B ⊥⊥d C | A?
Yes! B ← A→ C and B → D ← C are both blocked.

▶ Is B ⊥⊥d C | A,E?
No! B → D ← C is now open (condition on E opens up the collider at D).
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Global Markov property

For any distribution p(V ) that satisfies the DAG factorization wrt G(V ), the
following Global Markov property holds: for all disjoint subsets X ,Y ,Z of V we
have, (

X ⊥⊥d Y | Z
)∣∣∣

G(V )
=⇒

(
X ⊥⊥ Y | Z

)∣∣∣
p(V )

where (⊥⊥d)
∣∣
G

denotes d-separation in G and (⊥⊥)
∣∣
p

denotes independence in p.

▶ We can apply a purely graphical criterion to a DAG G(V ) to tell us about
conditional independence facts in the joint distribution p(V ).

▶ The above is a one way implication!
▶ We could indeed have extra independence restrictions in p(V ) that cannot

be read by d-separation (this occurs in unfaithful distributions).
(Peters et al., 2014; Peters, 2015; Sadeghi, 2017)
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Equivalence of DAG properties

The statistical model of a DAG is characterized with three definitions:

▶ Factorization (writes the distribution as a set of small factors).

▶ Local Markov property (lists a small but complete set of independence
constraints).

▶ Global Markov property (lists all independence constraints in the model).

A distribution p(V ) factorizes according to a DAG G(V ) if and only if it obeys the
local Markov property according to G(V ) if and only if it obeys the global Markov
property according to G(V ) (Verma and Pearl, 1990).

DAG factorization ⇐⇒ Local Markov property ⇐⇒ Global Markov property
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Causal model of a DAG

▶ The causal model of a DAG can be formally defined in terms of
Nonparametric Structural Equations Model (NPSEM).

▶ It describes how “nature” assigns values to each variable in the model.

▶ For every Vi ∈ V : Vi ← fVi

(
paG(Vi ), ϵVi

)
▶ ϵVi denotes the error term (all external unmeasured causes of Vi ).
▶ fVi is nonparametric. It does not constrain the dependence of Vi on its

parents and ϵVi in any way.
▶ This is an imperative assignment, not an equality! which means the model

is not “reversible.”

▶ NPSEM with independent errors (NPSEM-IE) (Pearl, 2009)
▶ Unmeasured factors are assumed to be independent – a reflection that all

common causes have been measured.
▶ The explicit assumption is that ⊥⊥ {ϵVi , ∀Vi ∈ V}, and thus

p(ϵ) =
∏

Vi ∈V p(ϵVi ).
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Intervention in causal models

▶ Let T be the variable that we would like to (hypothetically) intervene on and
set it to t.

▶ An intervention that sets T = t entails the following three changes:

I. Structural changes to the causal model
▶ In the corresponding NPSEM, replace T ← fT (paG(T ), ϵT ) with T ← t.
▶ The structural equations for other variables may change depending on their

genealogical relations to T .

II. Graphical changes to the DAG
▶ In the corresponding DAG G(V ), delete all incoming edges into T and

switch random T to fixed value t.
▶ Nodes on the downstream of T turn into counterfactuals.

III. Probabilistical changes to the joint distribution
▶ In the corresponding joint distirbution p(V ), drop the factor p(T | paG(T ))

from the factorization of p(V ), and evaluate all other factors at T = t.
▶ Upon the intervention, we end up with a truncated factorization.
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Example: intervention in causal models

▶ Let T be the treatment of interest in the following DAG:

T

X

Y

▶ Structural operation of intervening on T and setting it to t:

X ← fX (ϵX ) X ← fX (ϵX )
T ← fT (X , ϵT ) T ← t

Y ← fY (X ,T , ϵY ) Y (t) ← fY (X , t, ϵY )

NPSEM-IE implies the conditional ignorability assumption: Y (t) ⊥⊥ T | X .

▶ Graphical operation of this intervention is illustrated as follows:

T

X

Y T = t

X

Y (t)

▶ Probabilistic operation of this intervention is a truncated factorization:

p(X ,Y (t)) =
p(X ,Y ,T )
p(T | X)

∣∣∣
T=t

=
p(X ,Y ,T = t)
p(T = t | X)

= p(X) p(Y | T = t,X).

Do-calculus notation of Pearl: p(X ,Y (t)) ≡ p(X ,Y | do(T = t)).
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Do-calculus notation of Pearl: p(X ,Y (t)) ≡ p(X ,Y | do(T = t)).
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Example: intervention in causal models

▶ Let T be the treatment of interest in the following DAG:

T

X

Y
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Missing data notation

▶ X = (X1, . . . ,XK )T : a vector of K random variables
▶ Given a finite sample from p(X):

▶ R = (R1, . . . ,RK )T : binary missingness indicators

Rk = 1 if Xk is observed, and Rk = 0 otherwise

▶ X∗ = (X∗
1 , . . . ,X∗

K )T : coarsened version of X

X∗
k = Xk if Rk = 1, and X∗

k = ? otherwise.

▶ Causal interpretation of the tuple (Xk ,Rk ,X ∗
k ):

▶ Rk : a treatment variable that can be intervened on.
▶ Xk : a counterfactual – had we intervened and set Rk = 1.
▶ X∗

k : a factual variable.

▶ Switching notation to emphasize the counterfactual connotation:
X , R, X ∗ 7→ L(1), R, L

L(1) = (L(1)
1 , . . . , L(1)

K )T and L = (L1, . . . , LK )T .

▶ Z : completely observed variables
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Missing data models

▶ A missing data model M is a set of distributions defined over variables in
{Z , L(1),R, L}.

▶ By chain rule of probability, we can factorize p(Z , L(1),R, L) as follows:

p(Z , L(1))︸ ︷︷ ︸
target law

× p(R | L(1),Z)︸ ︷︷ ︸
missingness mechanism︸ ︷︷ ︸

full law p(L(1),Z ,R)

× p(L | L(1),R,�Z)︸ ︷︷ ︸
deterministic terms

.

▶ Consistency assumption: Lk =
{

L(1)
k if Rk = 1

? if Rk = 0

▶ Observed data law is p(Z ,R, L), where counterfactuals are marginalized out.
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A missing data workflow

1. Define the estimand (often done in the absence of missing data).
▶ A function of target law p(Z , L(1)) or full law p(Z , L(1),R).

2. Assume a model that links the counterfactual, factual, and missingness
indicator variables.

▶ Use Directed Acyclic Graphs (DAGs) to encode the modeling assumptions.

3. Determine whether the estimand is identifiable in the assumed model.
▶ Focus on identification of the target and full laws.

4. If estimand is identifiable, find the best estimation strategy, and if it is not,
perhaps stronger assumptions are needed (or alternatively obtaining bounds).

5. Conduct sensitivity analysis to reflect on the assumptions.
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Introducing missing data DAGs

▶ Define missing data models via restrictions on the full data distribution that can
be represented by a DAG (similar to causal inference).

▶ In missing data DAGs: (Mohan et al., 2013)

1. Observed and counterfactual variables appear on the same graph

2. There are certain edge restrictions: (marked in red)

L(1)
i

Ri

Li

deterministic edges (in gray)

L(1)
i L(1)

j

Ri

Li

Rj

Lj

L(1)
i L(1)

j

Ri

Li

Rj

Lj

“no interference”

▶ The “no interference” assumption can be relaxed (Srinivasan et al., 2023).
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Missing data DAGs

▶ Proxy causes (Lj → Ri ) were not considered by Mohan et al. (2013), but
were considered by Bhattacharya et al. (2019); Nabi et al. (2020).

L(1)
i L(1)

j

Ri

Li

Rj

Lj

“counterfactual cause”

L(1)
i L(1)

j

Ri

Li

Rj

Lj

“proxy/observed cause”

L(1)
i L(1)

j

Ri

Li

Rj

Lj

(a)

L(1)
i L(1)

j

Ri

Li

Rj

Lj

(b)

As an example, assume variables in missing data DAGs (a) and (b) are binary:

▶ (a):
p(Ri = 1 | L(1)

j ,Rj)︸ ︷︷ ︸
4 parameters

.

▶ (b):
p(Ri = 1 | Lj ,Rj = 1)︸ ︷︷ ︸

2 parameters

and p(Ri = 1 | Rj = 0, Lj =?)︸ ︷︷ ︸
1 parameter

.
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Examples: missing data DAGs

L(1)
1 L(1)

2

R1 R2

L1 L2

MCAR

(Robins, 1997)

L(1) Z

R

L

MAR

L(1)
1 L(1)

2

R1 R2

L1 L2

MAR

L(1)
1 L(1)

2

R1 R2

L1 L2

MNAR: permutation

(Robins, 1997)

L(1)
1 L(1)

2

R1 R2

L1 L2

MNAR: block-conditional

(Zhou et al., 2010)

L(1)
1 L(1)

2

R1 R2

L1 L2

MNAR: block-parallel

(Mohan et al., 2013)
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L(1)
1 L(1)

2

R1 R2

L1 L2

MNAR: block-parallel

(Mohan et al., 2013)
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Examples: missing data DAGs ctd.

How do models differ in telling a story about the missingness mechanisms?

▶ L(1)
1 : true smoking status of an individual.

▶ L(1)
2 : diagnosis of bronchitis.

▶ R1,R2: encode whether these variables have been measured or not.

▶ L(1)
2 → R1

Inquiry on patient’s smoking status depends
on prognosis of bronchitis.

▶ R1 → R2 ← L1
Whether the true bronchitis status is
measured via a diagnostic test depends on
the doctor’s awareness of the individual’s
smoking status (R1) and their observed value
of smoking (L1).

(smoking) L(1)
1 L(1)

2
(bronchitis)

R1 R2

L1 L2

MNAR: permutation

(Robins, 1997)
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Examples: missing data DAGs ctd.

How do models differ in telling a story about the missingness mechanisms?

▶ L(1)
1 : true smoking status of an individual.

▶ L(1)
2 : diagnosis of bronchitis.

▶ R1,R2: encode whether these variables have been measured or not.

▶ R1 has no parent
Inquiry into smoking status is random (e.g.,
as in random screening programs or surveys).

▶ R1 → R2 ← L(1)
1

Administration of a diagnostic test depends
on the inquiry into smoking, as well as the
potentially unobserved past history of
smoking.

(smoking) L(1)
1 L(1)

2
(bronchitis)

R1 R2

L1 L2

MNAR: block-conditional

(Zhou et al., 2010)
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Examples: missing data DAGs ctd.

How do models differ in telling a story about the missingness mechanisms?

▶ L(1)
1 : true smoking status of an individual.

▶ L(1)
2 : diagnosis of bronchitis.

▶ R1,R2: encode whether these variables have been measured or not.

▶ R1 ← L(1)
2

Inquiry into smoking status depends on
prognosis of bronchitis.

▶ R2 ← L(1)
1

Administration of the diagnostic test
depends on the suspected smoking status of
an individual.

(smoking) L(1)
1 L(1)

2
(bronchitis)

R1 R2

L1 L2

MNAR: block-parallel

(Mohan et al., 2013)

39/110



Missing data DAG models

▶ Denote the missing data DAG (m-DAG) defined over V = (Z , L(1),R, L) via G(V ).

▶ The statistical model of m-DAG G(V ) is a set of distributions that factorize as:

p(Z , L(1),R, L) =
∏
Vi ∈V

p(Vi | paG(Vi ))

=
∏

Vi ∈V \L

p(Vi | paG(Vi ))×
∏
Li ∈L

p(Li | L(1)
i ,Ri ).

▶ Familiar concepts like d-separation and Markov properties carry over.
▶ Factorization: probability distribution as a set of small factors.
▶ Local Markov property: a small but complete set of indep constraints.

Vi ⊥⊥ ndG(Vi ) \ paG(Vi ) | paG(Vi ), ∀Vi ∈ V .

▶ Global Markov property: all independence constraints in the model.

Given X ,Y ,Z ∈ V : (X ⊥⊥d-sep Y | Z)G(V ) =⇒ (X ⊥⊥ Y | Z)p(V ).

▶ All three properties are equivalent.
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d-separation refresher

L(1)
1 L(1)

2

R1 R2

L1 L2

R1 ⊥⊥ L(1)
1

R1 ̸⊥⊥ L(1)
1 | R2
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Examples: m-DAG models

L(1)
1 L(1)

2

R1 R2

L1 L2

MCAR

R1 ⊥⊥ R2, L(1)
1 , L(1)

2

R2 ⊥⊥ R1, L(1)
1 , L(1)

2

L(1) Z

R

L

MAR

R ⊥⊥ L(1) | Z

L(1)
1 L(1)

2

R1 R2

L1 L2

MAR

R1 ⊥⊥ L(1)
1 , L(1)

2

R2 ⊥⊥ L(1)
1 , L(1)

2 | R1, L1

L(1)
1 L(1)

2

R1 R2

L1 L2

Permutation (Robins, 1997)

R1 ⊥⊥ L(1)
1 | L

(1)
2

R2 ⊥⊥ L(1)
1 , L(1)

2 | R1, L1

L(1)
1 L(1)

2

R1 R2

L1 L2

Block-conditional (Zhou et al., 2010)

R1 ⊥⊥ L(1)
1 , L(1)

2

R2 ⊥⊥ L(1)
1 | R1, L(1)

1

L(1)
1 L(1)

2

R1 R2

L1 L2

Block-parallel (Mohan et al., 2013)

R1 ⊥⊥ R2, L(1)
1 | L

(1)
2

R2 ⊥⊥ R1, L(1)
2 | L

(1)
1
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Graphical representations of MCAR, MAR, MNAR mechanisms

Missingness mechanism, p(R | paG(R)) =
∏

Rk ∈R p(Rk | paG(Rk)), is

▶ MCAR: if p(Rk | paG(Rk)), ∀Rk ∈ R, is not a function of variables in
{L(1), L,Z ,R}.

▶ Graphically speaking, there are no edges that point to variables in R.

▶ MAR: if p(Rk | paG(Rk)), ∀Rk ∈ R, is not a function of variables in L(1), but
could be a function of variables in {Z , L,R}.

▶ Graphically speaking, there are no edges from variables in L(1) to variables in R.

▶ MNAR: if there exists at least one Rk ∈ R with parents in L(1).
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Part 2. Nonparametric Identification



Identification in missing data models

▶ Let ψ := E[h(p(Z , L(1)))] denote the parameter (estimand) of interest.

▶ Let the full law p(Z , L(1),R) be Markov relative to an m-DAG G(V ).

▶ To do inference on ψ, we first need to argue whether ψ is identified as a
function of the observed data law in the assumed m-DAG or not?

▶ The estimand ψ is identified in the assumed m-DAG G, if it can be expressed
as a unique function of the observed data law p(Z , L,R). This means:

▶ A parameter is identified under a particular collection of assumptions if
these assumptions imply that the distribution of the observed data is
compatible with a single value of the parameter.

▶ If there exists no unique mapping between the counterfactual distribution
and the observed data law, then the parameter is not identified.

▶ Instead of ψ, we might be interested in identification of the entire target law
p(Z , L(1)) or the entire full law p(Z , L(1),R).
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Example: simple identification arguments

Is the target law p(Z , L(1)) identified as a function of the observed data law
p(Z ,R, L)?

▶ Under MCAR missingness, target law is identified:

p(Z , L(1)) = p(Z , L(1) | R = 1) R ⊥⊥ Z , L(1)

= p(Z , L | R = 1). consistency

▶ Under MAR missingness, target law is identified:

p(Z , L(1)) = p(Z)× p(L(1) | Z)

= p(Z)× p(L(1) | Z ,R = 1) R ⊥⊥ L(1) | Z
= p(Z)× p(L | Z ,R = 1). consistency

▶ MNAR model: p(Z , L(1)) = ???

MNAR models ≡ causal models with unmeasured confounding
▶ Sometimes we succeed and sometimes we fail to identify MNAR models!
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Nonparametric identification theory in causal inference

▶ Identification questions in causal inference: given an arbitrary DAG with
hidden/unmeasured variables, is p(Y (t)) identified?

▶ Sound and complete algorithms exist for causal effect identification.

▶ Soundness: functionals of identified effects are correct.
▶ Completeness: no-identifiability of the causal effect is provable.

(Shpitser and Pearl, 2006; Huang and Valtorta, 2006; Bhattacharya et al.,
2022; Richardson et al., 2023)

▶ Similarly, given that assumptions/restrictions in a missing data model are
encoded via an m-DAG, we would like to know whether the underlying
full/target law is identified or not.

▶ Can identification theory in causal DAGs be used to reason about
identification in m-DAGs, given their similarities?

▶ Causal identification theory is incomplete for missing data identification!
▶ There are identified MNAR models where causal identification theory fails.
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Incompleteness of causal identification theory for m-DAGs

• Causal identification theory is incomplete for missing data identification.

L(1)
1 L(1)

2

R1 R2

L1 L2

Block-parallel

R1 R2

L1 L2

Observed margin

One-line ID (Richardson et al., 2023)
▶ Y ∗ = {L1, L2}
▶ GY ∗ = L1 ↔ L2
▶ District: {L1, L2}
▶ Need to fix R1, R2 and fail.

L(1)
1 L(1)

2

R1 R2

L1 L2

Permutation

R1 R2

L1 L2

Observed margin

One-line ID (Richardson et al., 2023)
▶ Y ∗ = {L1, L2}
▶ GY ∗ = L1 ↔ L2
▶ District: {L1, L2}
▶ Need to fix R1, R2 and fail.
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Nonparametric identification in m-DAGs

▶ The target law is identified if and only if the missingness mechanism
p(R = 1 | L(1),Z) is identified. Using Bayes rule:

p(R = 1 | L(1),Z) = p(Z , L(1),R = 1)
p(L(1),Z) → p(Z , L(1)) = p(Z , L(1),R = 1)

p(R = 1 | Z , L(1)) .

▶ The full law is identified if and only if the missingness mechanism
p(R = r | L(1),Z) is identified, for all possible missingness pattern R = r .
Using chain rule:

p(Z , L(1),R = r) = p(Z , L(1))× p(R = r | L(1),Z)

= p(Z , L(1),R = 1)
p(R = 1 | L(1),Z) × p(R = r | L(1),Z).

▶ Game plan: focus on identification of the missingness mechanism
p(R | L(1),Z) in a given m-DAG.
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Np-identification of missingness mechanisms in m-DAGs

Given an m-DAG, is the missingness mechanism identified or not? We look at two
different parameterizations of p(R | L(1),Z):

(i) m-DAG factorization: (Bhattacharya et al., 2019)

p(R | paG(R)) =
∏

Rk ∈R

p(Rk | paG(Rk))

Identify each propensity score p(Rk | paG(Rk)), for all Rk ∈ R.

(ii) Odds ratio parameterization: (Chen, 2007; Nabi et al., 2020)

K∏
k=1

p(Rk | R−k = 1, paG(R))×
K∏

k=2

OR(Rk ,R≺k | R≻k = 1, paG(R)),

where R−k = R \ Rk ,R≺k = {R1, . . . ,Rk−1},R≻k = {Rk+1, . . . ,RK}.

Identify each univariate conditionals and pairwise odds ratio terms.
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Identification arguments

1. m-DAG factorization of the missingness mechanism

2. Odds ratio parameterization of the missingness mechanism
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Identification via m-DAG factorization

▶ Whether and how full/target law is identified in a given m-DAG G.
▶ Target law: argue for identification of p(R = 1 | paG(R)).
▶ Full law: argue for identification of p(R = r | paG(R)), ∀r ∈ {0, 1}K .

▶ Target law is identified if each propensity score p(Rk | paG(Rk)) is identified
only when Ri = 1 for Ri ∈ paG(Rk),

p(R = 1 | paG(R)) =
∏

Rk ∈R

p(Rk | paG(Rk))
∣∣∣
R=1

.

▶ Full law is identified if each propensity score p(Rk | paG(Rk)) is identified at
all levels of Ri ∈ paG(Rk),

p(R = r | paG(R)) =
∏

Rk ∈R

p(Rk | paG(Rk))
∣∣∣
R=r

▶ There are two major ideas for propensity scores identification:

1. Associational irrelevancy: d-separation
2. Causal irrelevancy: invariance property
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1. Associational irrelevancy

▶ In order to identify the propensity score of Rk , p(Rk | paG(Rk)), we need to
select on the following missingness indicators:

Rs
k =

{
Ri ∈ R | L(1)

i ∈ paG(Rk)
}

(selection set for Rk)

▶ For any Ri ∈ R s
k , Ri is either a descendant of Rk or a non-descendant of Rk .

▶ If Ri is a non-descendant of Rk , then we can apply the local Markov
property which states Rk ⊥⊥ ndG(Rk) \ paG(Rk) | paG(Rk).

▶ So we can include Ri = 1 in the conditioning set and replace L(1)
i with

{Li ,Ri = 1}.

▶ Formally, for any Ri ∈ Rs
k ∩ ndG(Rk), we can write:

p(Rk | paG(Rk))
∣∣∣
R=1

= p(Rk | paG(Rk)︸ ︷︷ ︸
includes L(1)

i

,Ri = 1)
∣∣∣
R=1

.

52/110



1. Associational irrelevancy

▶ In order to identify the propensity score of Rk , p(Rk | paG(Rk)), we need to
select on the following missingness indicators:

Rs
k =

{
Ri ∈ R | L(1)

i ∈ paG(Rk)
}

(selection set for Rk)

▶ For any Ri ∈ R s
k , Ri is either a descendant of Rk or a non-descendant of Rk .

▶ If Ri is a non-descendant of Rk , then we can apply the local Markov
property which states Rk ⊥⊥ ndG(Rk) \ paG(Rk) | paG(Rk).

▶ So we can include Ri = 1 in the conditioning set and replace L(1)
i with

{Li ,Ri = 1}.

▶ Formally, for any Ri ∈ Rs
k ∩ ndG(Rk), we can write:

p(Rk | paG(Rk))
∣∣∣
R=1

= p(Rk | paG(Rk)︸ ︷︷ ︸
includes L(1)

i

,Ri = 1)
∣∣∣
R=1

.

52/110



1. Associational irrelevancy

▶ In order to identify the propensity score of Rk , p(Rk | paG(Rk)), we need to
select on the following missingness indicators:

Rs
k =

{
Ri ∈ R | L(1)

i ∈ paG(Rk)
}

(selection set for Rk)

▶ For any Ri ∈ R s
k , Ri is either a descendant of Rk or a non-descendant of Rk .

▶ If Ri is a non-descendant of Rk , then we can apply the local Markov
property which states Rk ⊥⊥ ndG(Rk) \ paG(Rk) | paG(Rk).

▶ So we can include Ri = 1 in the conditioning set and replace L(1)
i with

{Li ,Ri = 1}.

▶ Formally, for any Ri ∈ Rs
k ∩ ndG(Rk), we can write:

p(Rk | paG(Rk))
∣∣∣
R=1

= p(Rk | paG(Rk)︸ ︷︷ ︸
includes L(1)

i

,Ri = 1)
∣∣∣
R=1

.

52/110



Example 1/2: associational irrelevancy (block-parallel)

L(1)
1 L(1)

2

R1 R2

L1 L2

▶ Is the full/target law identified in the
block-parallel model?

p(R | paG(R)) = p(R1 | paG(R1))× p(R2 | paG(R2))

Identification of p(R1 | paG(R1))

p(R1 | paG(R1)) = p(R1 | L(1)
2 )

= p(R1 | R2 = 1, L(1)
2 ) R1 ⊥⊥ R2 | L(1)

2

= p(R1 | R2 = 1, L2) consistency

Identification of p(R2 | paG(R2))

p(R2 | paG(R2)) = p(R2 | L(1)
1 )

= p(R2 | R1 = 1, L(1)
1 ) R2 ⊥⊥ R1 | L(1)

1

= p(R2 | R1 = 1, L1) consistency

▶ So p(R | paG(R)) is ID, which means the full and target laws are both ID.
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Example 2/2: associational irrelevancy (block-conditional MAR)

L(1)
1 L(1)

2

R1 R2

L1 L2

▶ Is the full/target law identified in the
block-conditional MAR model?

p(R | paG(R)) = p(R1 | paG(R1))× p(R2 | paG(R2))

• p(R1 | paG(R1)) = p(R1) is identified.

Identification of p(R2 | paG(R2))

p(R2 | paG(R2)) = p(R2 | R1, L(1)
1 )

=???

p(R2 | paG(R2))
∣∣∣
R=1

= p(R2 = 1 | R1 = 1, L(1)
1 )

= p(R2 = 1 | R1 = 1, L1) consistency

▶ Only p(R2 | R1 = 1, L(1)
1 ) is identified, so the target law is certainly ID.

▶ It seems the full law might NOT be identified. We have to prove that the full
law is not identified.
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A non-identified structure

▶ Claim: p(R2 = r2 | R1 = 0, L(1)
1 ) is not ID.

L(1)
1 L(1)

2

R1 R2

L1 L2

▶ Assume binary data. So the full law p(R, L(1)) has 7 parameters.

▶ 5 identified parameters:

▶ α1 : p(L(1)
1 = 1) = p(L(1)

1 = 1 | R1 = 1) = p(L1 = 1 | R1 = 1)
▶ α2 : p(L(1)

2 = 1) = p(L(1)
2 = 1 | R2 = 1) = p(L2 = 1 | R2 = 1)

▶ α3 : p(R1 = 1)
▶ α4,5 : p(R2 = 1 | R1 = 1, L(1)

1 = l1) = p(R2 = 1 | R1 = 1, L1 = l1).

▶ 2 unidentified parameters:

▶ α6,7 : p(R2 = 1 | R1 = 0, L(1)
1 = l1), l1 ∈ {0, 1}
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Proving non-identifiability claims

R1 p(R1)
0 a
1 1− a

L(1)
1 p(L(1)

1 )
0 b
1 1− b

L(1)
2 p(L(1)

2 )
0 c
1 c

R2 R1 L(1)
1 p(R2 | R1, L(1)

1 )
0 0 0 d
1 0 0 1− d
0 1 0 e
1 1 0 1− e
0 0 1 f
1 0 1 1− f
0 1 1 g
1 1 1 1− g

L(1)
1 L(1)

2

R1 R2

L1 L2

R1 R2 L(1)
1 L(1)

2 p(FULL LAW) L1 L2 p(OBSERVED LAW)

0 0

0 0 abcd

? ? a
[
db + f (1− b))

]1 0 af (1− b)c
0 1 adb(1− c)
1 1 af (1− b)(1− c)

1 0

0 0 (1− a)ebc 0
?

(1− a)eb1 0 (1− a)g(1− b)c
0 1 (1− a)eb(1− c) 1 (1− a)g(1− b)1 1 (1− a)g(1− b)(1− c)

0 1

0 0 a(1− d)bc

?
0 ac

[
1−

(
db + f (1− b)

)]
1 0 a(1− f )(1− b)c
0 1 a(1− d)b(1− c) 1 a(1− c)

[
1−

(
db + f (1− b)

)]
1 1 a(1− f )(1− b)(1− c)

1 1

0 0 (1− a)(1− e)bc 0 0 (1− a)(1− e)bc
1 0 (1− a)(1− g)(1− b)c 1 0 (1− a)(1− g)(1− b)c
0 1 (1− a)(1− e)b(1− c) 0 0 (1− a)(1− e)b(1− c)
1 1 (1− a)(1− g)(1− b)(1− c) 1 1 (1− a)(1− g)(1− b)(1− c)

We can pick any {d , f } as long as bd + (1− b)f stays the same.
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Colluder: non-identified structure

Definition (Colluder)
If ∃ Ri ,Rj ∈ R such that Ri → Rj ← L(1)

i , then a special collider structure forms at
Rj , referred to as colluder.

L(1)
i L(1)

j

Ri Rj

Li Lj

Lemma (Colluder non-identification)
If ∃ Ri ,Rj ∈ R such that Ri → Rj ← L(1)

i then p(Rj | paG(Rj) \ Ri ,Ri = 0) is not
identified (Bhattacharya et al., 2019).

The above result means that whenever we spot a colluder in an m-DAG, we can
immediately conclude the underlying full law is not identified.
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Associational irrelevancy: limitations

L(1)
1 L(1)

2

R1 R2

L1 L2

▶ Is the full/target law identified in the
permutation model?

p(R | L(1)) = p(R1 | paG(R1))× p(R2 | paG(R2))

Identification of p(Ri | paG(Ri ))

p(R2 | paG(R2)) = p(R2 | R1, L1) ✓

p(R1 | paG(R1)) = p(R1 | L(1)
2 ) R1 ̸⊥⊥ R2 | L(1)

2

▶ What does this mean? Is the propensity score of R1 not identified? which
would then imply the full law is not ID.

▶ To answer this question, we either need to prove the propensity score is not
identified or find a way to identify it.
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2. Causal irrelevancy

Invariance property:

▶ Given the propensity score for Rk ∈ R, the conditioning set paG(Rk) captures
all the direct causes of Rk . Hence, it remains invariant to any set of
interventions that disrupts other parts of the full law.

▶ Formally, given R∗ ⊆ R \ Rk , we have

p
(
Rk | paG(Rk)

)
= p

(
Rk | paG(Rk), do(R∗ = 1)

)
.

▶ Due to invariance property of the propensity scores, we can sometimes
succeed in identifying a propensity score by exploring interventional
distributions where a subset of variables are intervened on.
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Intervention operation on missingness indicators

An intervention that sets Rk = 1, entails the following changes:

▶ Graphical changes to the missing data DAG G(V )

▶ Delete all the incoming edges into Rk and fix Rk to take value 1, and
▶ Equate the counterfactual variable L(1)

k to Lk (by consistency).

▶ Probabilistical changes to the joint distribution p(V )

▶ Drop the propensity score p(Rk | paG (Rk)) from the joint factorization, and
evaluate the truncated factorization at Rk = 1.
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Example: causal irrelevancy

L(1)
1 L(1)

2

R1 R2

L1 L2

Permutation G0

G0 : R1 ̸⊥⊥ R2 | L(1)
2

Invariance property:

p(R1 | L(1)
2 ) = p(R1 | L(1)

2 , do(R2 = 1))

Graphical and probabilistical changes after intervening on R2:

L(1)
1 L(1)

2 = L2

R1 R2 = 1

L1

Permutation G1

p(R1, L(1)
1 , L(1)

2 , L1 | do(R2 = 1)) =
p(R1, L(1)

1 , L(1)
2 , L1,R2)

p(R2 | R1, L1)

∣∣∣
R2=1

▶ The propensity score of R1 is identified from the above intervention dist.
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Example ctd. causal irrelevancy

L(1)
1 L(1)

2 = L2

R1 R2 = 1

L1

Permutation G1

p(R1, L(1)
1 , L(1)

2 , L1 | do(R2 = 1)) =
p(R1, L(1)

1 , L2, L1,R2 = 1)
p(R2 = 1 | R1, L1)

p(R1, L(1)
2 | do(R2 = 1)) =

∑
l1

p(R1, l1, L2,R2 = 1)
p(R2 = 1 | R1, l1)

.

▶ The propensity score of R1 is identified from the above intervention dist.

p(R1 | L(1)
2 ) = p(R1 | L(1)

2 , do(R2 = 1))

=
p(R1, L(1)

2 | do(R2 = 1))
p(L(1)

2 | do(R2 = 1))
.

First equality holds by the invariance property and second holds by Bayes rule.
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Order of interventions

• Target law is ID via parallel/simultaneous interventions on R1 and R2.

L(1)
1 L(1)

2

R1 R2

L1 L2

Block-parallel

p(L(1)) =
p(L(1),R)

p(R1 | paG(R1))× p(R2 | paG(R2))

∣∣∣
R=1

=
p(L,R = 1)

p(R1 = 1 | R2 = 1, L2)× p(R2 = 1 | R1 = 1, L1)
.

• Target law ID is obtained via sequential interventions on first R2 and then R1.

L(1)
1 L(1)

2

R1 R2

L1 L2

Permutation

p(L(1)) =
p(L(1),R)

p(R1 | paG(R1))× p(R2 | paG(R2))

∣∣∣
R=1

=
p(L,R = 1)

p(R1 = 1 | L(1)
2 , do(R2 = 1))× p(R2 = 1 | R1 = 1, L1)

.
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Main identification challenge: selection bias

Can we apply the causal-irrelevancy idea to the block-parallel model?

L(1)
1 L(1)

2

R1 R2

L1 L2

p(R2 | L(1)
1 ) = p(R2 | L(1)

1 , do(R1 = 1))

=
p(R2, L(1)

1 | do(R1 = 1))
p(L(1)

1 | do(R1 = 1))

An intervention on R1 implies:

L(1)
1 = L1 L(1)

2

R1 = 1 R2 = 1

L2

p(R2, L(1)
1 , L(1)

2 , L2 | do(R1 = 1)) =
p(L1,R1 = 1, L(1)

2 , L2,R2)
p(R1 = 1 | L(1)

2 )

We can only evaluate the above expression when R2 = 1:

p(L(1)
1 ,R2 = 1 | do(R1 = 1)) =

∑
l (1)
2

p(L(1)
2 ,R1 = 1,R2 = 1)

p(R1 = 1 | L(1)
2 ,R2 = 1)

Intervening on R1 induces a selection on R2.
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Inevitable selection bias

▶ The lesson is that sequential interventions do not help with identification
arguments in the block-parallel model. Indeed, we need parallel
interventions to dodge the selection bias issue.

▶ Sometimes we cannot avoid the selection bias and end up with unidentified
distributions. An example of this is the so-called criss-cross model,

L(1)
1 L(1)

2

R1 R2

L1 L2

Criss-cross (Nabi and Bhattacharya, 2023)

▶ Full law p(L(1),R) is not identified because of the colluder at R2.

▶ Target law p(L(1)) is also provably not identified
(Nabi and Bhattacharya, 2023; Guo et al., 2023).
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Partial orders of interventions

▶ Sufficient rules for identification: finding valid partial orders of interventions
that avoid the issue of selection bias.

▶ That is a combination of sequential and parallel interventions
(as opposed to a total order in causal inference).

▶ Dodging selection bias requires:
▶ Set interventions
▶ Intervening on variables other than R
▶ Interventions on margins of G (pseudo-propensity scores)

▶ See Bhattacharya et al. (2019) and Nabi et al. (2022) for more discussions.
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Identification arguments

1. m-DAG factorization of the missingness mechanism

2. Odds ratio parameterization of the missingness mechanism
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Odds ratio parameterization (Chen, 2007)

Given disjoint sets of variables A,B,C , and reference values a0, b0 :

p(A,B | C) =
1
Z(C)

× p(A | B = b0,C)× p(B | A = a0,C)× OR(A,B | C),

where

OR(A = a,B = b | C) =
p(A = a | B = b,C)
p(A = a0 | B = b,C)

×
p(A = a0 | B = b0,C)
p(A = a | B = b0,C)

=
p(B = b | A = a,C)
p(B = b0 | A = a,C)

×
p(B = b0 | A = a0,C)
p(B = b | A = a0,C)

Z(C) =
∑
a,b

p(A = a | B = b0,C)× p(B = b | A = a0,C)× OR(A = a,B = b | C).

▶ It is symmetric: OR(A,B | C) = OR(B,A | C)

▶ OR(A = a0,B | C) = OR(A,B = b0 | C) = OR(A = a0,B = b0 | C) = 1
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Identification via odds ratio parameterization

▶ m-DAG factorization view for identification:

p(Ri ,Rj | paG(Ri ,Rj)) = p(Ri | paG(Ri ))× p(Rj | paG(Rj))

Identify:
▶ p(Ri | paG(Ri )),
▶ p(Rj | paG(Rj)).

▶ Odds ratio parameterization view for identification:

p(Ri ,Rj | L(1)) =
1

Z(L(1))
×p(Ri | Rj = 1, L(1))×p(Rj | Ri = 1, L(1))×OR(Ri ,Rj | L(1))

Identify:
▶ p(Ri | Rj = 1, L(1)),
▶ p(Rj | Ri = 1, L(1)),
▶ OR(Ri = 0,Rj = 0 | L(1)).
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Example: block-parallel model

L(1)
1 L(1)

2

R1 R2

L1 L2

▶ Is the full/target law identified in the
block-parallel model?

p(R | L(1)
1 ) =

1
Z(L(1))

× p(R1 | R2 = 1, L(1))︸ ︷︷ ︸
(1)

× p(R2 | R1 = 1, L(1))︸ ︷︷ ︸
(2)

×OR(R1,R2 | L(1))︸ ︷︷ ︸
(3)

Note that R1 ⊥⊥ L(1)
1 | R2, L(1)

2 and R2 ⊥⊥ L(1)
2 | R1, L(1)

1 ,

(1) : p(R1 | R2 = 1, L(1)) = p(R1 | R2 = 1, L(1)
2 ) = p(R1 | R2 = 1, L2)

(2) : p(R2 | R1 = 1, L(1)) = p(R2 | R1 = 1, L(1)
1 ) = p(R2 | R1 = 1, L1)

(3) : OR(R1 = r1,R2 = r2 | L(1)) = 1.

Yes, both full and target laws are identified.
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Why the two parameterizations?

There exist identified MANR models where:

▶ m-DAG factorization approach fails to identify the model, but the odds ratio
parameterization approach succeeds.

▶ Odds ratio parameterization approach fails to identify the model, but the
m-DAG factorization approach succeeds.
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Example: m-DAG factorization fails!

L(1)
1 L(1)

2 L(1)
3

R1 R2 R3

L1 L2 L3

Is the target/full law identified?

p(R | L(1)) =
∏
Ri ∈R

p(Ri | paG(Ri ))

= p(R1 | R2, L(1)
3 )× p(R2 | R3, L(1)

1 )× p(R3 | L(1)
1 ).
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Example ctd. identification of the propensity score of R1

L(1)
1 L(1)

2 L(1)
3

R1 R2 R3

L1 L2 L3

p(R | L(1)) =
∏
Ri ∈R

p(Ri | paG (Ri ))

= p(R1 | R2, L(1)
3 ) × p(R2 | R3, L(1)

1 ) × p(R3 | L(1)
1 ).

Nonparametric identification of p(R1 | paG(Ri ))

p(R1 | paG(R1)) = p(R1 | R2, L(1)
3 )

= p(R1 | R3 = 1,R2, L(1)
3 ) R1 ⊥⊥ R3 | R2, L(1)

3

= p(R1 | R3 = 1,R2, L3) consistency.
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Example ctd. identification of the propensity score of R2

L(1)
1 L(1)

2 L(1)
3

R1 R2 R3

L1 L2 L3

L(1)
1 = L1 L(1)

2 L(1)
3

R1 = 1 R2 R3 = 1

L2 L3

p∗ = p(L(1),R1,R3 | do(R1 = 1)) =
p(L(1),R)

p(R1 = 1 | R3 = 1,R2, L(1)
3 )

.

Nonparametric identification of p(R2 | paG(Ri ))|R=1

p(R2 = 1 | paG(R2))|R=1 = p(R2 = 1 | R3 = 1, L(1)
1 )

= p(R2 = 1 | R3 = 1, L(1)
1 , do(R1 = 1)) causal irrelevance

= p∗(R2 = 1 | R3 = 1, L(1)
1 )

= p∗(R2 = 1 | R1 = 1,R3 = 1, L(1)
1 ) R2 ⊥⊥G∗ R1 | R3, L(1)

1

= p∗(R2 = 1 | R1 = 1,R3 = 1, L1) consistency
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Example ctd. identification of the propensity score of R3

L(1)
1 L(1)

2 L(1)
3

R1 R2 R3

L1 L2 L3

▶ Unfortunately, similar tricks do not help with identification of p(R3 | paG(R3)) due
to selection bias on R3 from intervening on either R1 or R2.

▶ It seems that the missingness mechanism is not identified. Thus, it seems neither
the full law nor the target law are identified. Can we prove this non-identification
claim?!

▶ The answer is no, because the model is indeed identified. We can prove
identification using odds ratio parameterization of the missingness
mechanism.
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Example ctd. odds ratio parameterization

L(1)
1 L(1)

2 L(1)
3

R1 R2 R3

L1 L2 L3

Univariate conditionals:
▶ p(R1 | R2 = 1,R3 = 1, L(1)) = p(R1 | R2 = 1,R3 = 1, L3)

▶ R1 ⊥⊥ L(1)
1 , L(2)

2 | R2,R3, L(1)
3

▶ p(R2 | R1 = 1,R3 = 1, L(1)) = p(R2 | R1 = 1,R3 = 1, L1, L3)
▶ R2 ⊥⊥ L(1)

2 | R1,R3, L(2)
1 , L(1)

3

▶ p(R3 | R1 = 1,R2 = 1, L(1)) = p(R3 | R2 = 1,R1 = 1, L1)
▶ R3 ⊥⊥ L(1)

2 , L(1)
3 | R1,R2, L(2)

1

Pairwise odds ratios:
▶ OR(R1,R2 | R3 = 1, L(1))
▶ OR(R2,R3 | R1 = 1, L(1))
▶ OR(R1,R3 | R2 = 1, L(1))
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Example ctd. identification of the paiwise odds ratio terms

L(1)
1 L(1)

2 L(1)
3

R1 R2 R3

L1 L2 L3

OR(R2 = 0,R3 = 0 | R1 = 1, L(1))

=
p(R3 = 0 | R2 = 0,R1 = 1, L(1))
p(R3 = 1 | R2 = 0,R1 = 1, L(1))

×
p(R3 = 1 | R2 = 1,R1 = 1, L(1))
p(R3 = 0 | R2 = 1,R1 = 1, L(1))

=
p(R3 = 0 | R2 = 0,R1 = 1, L(1)

1 )
p(R3 = 1 | R2 = 0,R1 = 1, L(1)

1 )
×

p(R3 = 1 | R2 = 1,R1 = 1, L(1)
1 )

p(R3 = 0 | R2 = 1,R1 = 1, L(1)
1 )

=
p(R3 = 0 | R2 = 0,R1 = 1, L1)
p(R3 = 1 | R2 = 0,R1 = 1, L1)

×
p(R3 = 1 | R2 = 1,R1 = 1, L1)
p(R3 = 0 | R2 = 1,R1 = 1, L1)

.

▶ First equality holds by definition, second by R3 ⊥⊥ L(1)
2 , L(1)

3 | R1,R2, L(1)
1 , and third

by consistency.

▶ OR(R2,R3 | R1 = 1, L(1)) and OR(R1,R3 | R2 = 1, L(1)) can be similarly identified.
Thus, the missingness mechanism, full law, and target law are all identified.
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Odds ratio parameterization of p(R | L(1))

▶ Without loss of generality assume Z = ∅.
▶ Let R−k = V \ Rk , R≺k = {R1, . . . ,Rk−1}, and R≻k = {Rk+1, . . . ,RK}.
▶ The general form of odds ratio parameterization is as follows:

p(R | L(1)) =
1

Z(L(1))
×

K∏
k=1

p(Rk | R−k = 1, L(1))×
K∏

k=2

OR(Rk ,R≺k | R≻k = 1, L(1)),

OR(Rk , R≺k | R≻k = 1, L(1)) =
p(Rk | R≻k = 1, R≺k , L(1))

p(Rk = 1 | R≻k = 1, R≺k , X (1))
×

p(Rk = 1 | R−k = 1, X (1))
p(Rk | R−k = 1, L(1))

.

Need to identify:
▶ Univariate conditional distributions: p(Rk | R−k = 1, L(1))
▶ Odds ratio terms: OR(Rk ,R≺k | R≻k = 1, L(1))

▶ When can we succeed?
▶ When do we fail?
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Full law identification theory in m-DAGs

Theorem (Graphical characterization of identified full laws)
Full law p(R, L(1),Z) that is Markov relative to a missing data DAG G is identified
if and only if G does not contain the following two structures: (Nabi et al., 2020)

▶ self-censoring edge: L(1)
i → Ri ,

▶ colluder: L(1)
j → Ri ← Rj .

L(1)
i

Ri

Li

self-censoring

L(1)
i L(1)

j

Ri Rj

Li Lj

colluder

▶ These graphical conditions are sound and complete for full law ID.
▶ Identification functional is given by the odds ratio parameterization of

p(R | Z , L(1)).
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Proof sketch

▶ Absence of self-censoring edges and colluders imply:

Rk ⊥⊥ L(1)
k | R−k , L(1) \ L(1)

k

▶ Odds ratio parameterization:

p(R | L(1)) =
1

Z(L(1))
×

K∏
k=1

p(Rk | R−k = 1, L(1))×
K∏

k=2

OR(Rk ,R≺k | R≻k = 1, L(1)).

▶ p(Rk | R−k = 1, L(1)) = p(Rk | R−k = 1, L−k).

▶ OR(Ri ,Rj | R−{i,j} = 1, L(1)) is identified via “symmetric argument,”

▶ It is not a function of L(1)
i and it is not a function of L(1)

j

▶ DAGs with no self-censoring edges and no colluders are submodels of Itemwise
Conditionally Independence Nonresponse model
(Sadinle and Reiter, 2017; Shpitser, 2016; Malinsky et al., 2021)
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Why the two parameterizations?

There exist identified MANR models where:

▶ m-DAG factorization approach fails to identify the model, but the odds ratio
parameterization approach succeeds.

▶ Odds ratio parameterization approach fails to identify the model, but the
m-DAG factorization approach succeeds.
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Example: odds ratio parameterization fails!

▶ If there exists a colluder in the m-DAG, then the full law is not identifiable.
However, the target law might still be identified.

▶ An example of this is the block-conditional MAR model.

L(1)
1 L(1)

2

R1 R2

L1 L2

▶ As we saw earlier, p(R = 1 | paG(R)) is easily identifiable as follows:

p(R = 1 | paG(R)) = p(R1 = 1)× p(R2 = 1 | R1 = 1, L1).

Therefore, the target law is identified. However, the odds ratio
parameterization approach fails here.

▶ Even though the odds ratio parameterization led to completeness results for
full law identification, the m-DAG factorization is still the only tool we can
use for target law identification (in the presence of colluders).
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Summary: np-identification in m-DAGs

▶ Causal identification theories are incomplete for identification of full and target
laws in m-DAGs.

▶ Full law (target law) identification is equivalent to identification of the missingness
mechanism for all missingness patters R = r (for all-one pattern R = 1).

▶ Two identification tools are at our disposal:
▶ m-DAG factorization of p(R | paG(R)) (Bhattacharya et al., 2019)
▶ odds ratio parameterization of p(R | paG(R)) (Nabi et al., 2020)

▶ There does exist sound and complete identification results for full law.
▶ Non-identified graphical structures are self-censoring edges and colluders

(Nabi et al., 2020)

▶ The completeness theory of identification for target law remains an open problem.
▶ Only known/proven non-identified graphical structures for target law are

self-censoring edges and criss-cross structures
(Nabi and Bhattacharya, 2023; Guo et al., 2023)

▶ For comprehensive review of these discussions see Nabi et al. (2022).
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Part 3. Non/Semi-parametric Estimation



Estimation: IPW

▶ Consider the permutation model with two variables:

L(1)
1 L(1)

2

R1 R2

L1 L2 (Permutation model)

▶ Let µ = E[h(L(1)
1 , L(1)

2 )] denote our parameter of interest, which is identified
as:

µ = E
[

R1 R2

π(R1 = 1 | L(1)
2 , do(R2 = 1)) π(R2 = 1 | R1 = 1, L1)

× h(L1, L2)
]
,

where π(Rk = 1 | paG(Rk)) = p(Rk = 1 | paG(Rk)).

▶ Given nuisance estimates πn, hn, an IPW estimator of µ is:

µn =
1
n

n∑
i=1

[
R1,i R2,i

πn(R1 = 1 | L(1)
2,i , do(R2 = 1)) πn(R2 = 1 | R1 = 1, L1,i )

× hn(L1,i , L2,i )

]
,

▶ How to obtain πn(R1 = 1 | L(1))?
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Weighted estimating equations

▶ How does identification of π(R1 = 1 | L(1)
2 ) help with estimation?

π(R1 = 1 | L(1)
2 ) = π(R1 = 1 | L(1)

2 , do(R2 = 1)) .

▶ Assume p(R1 = 1 | L(1)
2 ) = p(R1 = 1 | L(1)

2 ;α), α ∈ Rp , and consider the following
estimating equation for α under the full law:

E[U(R1, L(1)
2 ;α)] = 0 7→

n∑
i=1

U(R1,i , L(1)
2,i ;α) = 0 .

▶ Thus, below an estimating equation for α under the observed data law:

E
[

R2

π(R2 = 1 | R1, L1)
× U(R1, L2;α)

]
= 0.

7→
n∑

i=1

R2,i

πn(R2 = 1 | R1,i , L1,i )
× U(R1,i , L2,i ;α) = 0.

▶ A more desirable estimator for µ can be derived using the nonparametric efficient
influence function (EIF).
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General theory of estimation

▶ W.L.G. assume Z = ∅ and let O = (R, L) denote the observed data.

▶ Let µ = E [h(L(1))] be the parameter of interest for a specified function h(·)
in a given m-DAG G.

▶ A regular and asymptotically linear (RAL) estimator µn of µ has the property
that

√
n × (µn − µ) = 1√

n

n∑
i=1

Φ(Oi )︸ ︷︷ ︸
Influence Function

+ oP(1) .

Given the influence function Φ(O), we can construct a RAL estimator.

▶ Influence functions for estimator of µ live in the orthogonal complement of
observed data tangent space, ΛO,⊥.
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General theory of estimation ctd.

▶ The tangent space of the statistical model for an m-DAG G(L(1),R) is defined as
the collection of score functions over L(1),R, and is given by:

Λ = Λ1 + Λ2,

▶ Λ1 denotes be the collection of all score functions under model for L(1), i.e.,
mean-zero functions that respect the independence restrictions of the target
law p(L(1)), and

▶ Λ2 denotes the collection of scores under models for R | L(1), i.e., mean-zero
functions that respect the independence restrictions of the missingness
mechanism p(R | L(1)).

▶ The observed data tangent space is defined as:

ΛO = ΛO
1 ∪ ΛO

2 ,

▶ ΛO
1 : any function of observed data that lives in Λ1.

▶ ΛO
2 : any function of observed data that lives in Λ2.

▶ The orthogonal complement of observed data tangent space is defined as

ΛO,⊥ = ΛO,⊥
1 ∩ ΛO,⊥

2 .
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General theory of estimation ctd.

Influence functions for estimator of µ live in the orthogonal complement of
observed data tangent space, ΛO,⊥.

ΛO,⊥ = ΛO,⊥
1 ∩ ΛO,⊥

2 .

Scharfstein et al. (1999) have shown:

ΛO,⊥
1 =

{
R

p(R = 1 | L(1))a(L(1)) + b(O) : a(L(1)) ∈ Λ⊥
1 ,E[b(O) | L(1)] = 0

}
ΛO,⊥

2 =
{

b(O) : b(O) ∈ Λ⊥
2

}
.

Plan for deriving influence functions:

▶ Write out an expression for the elements of ΛO,⊥
1

▶ a(L(1)) ∈ Λ⊥
1 , and

▶ b(O) such that E[b(O) | L(1)] = 0.

▶ Find restrictions on these elements to ensure orthogonality to Λ2
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Application of general theory of estimation: a(L(1))

▶ Let L(1) = (L(1)
1 , L(1)

2 ) and R = (R1,R2).

▶ Let µ = E[h(L(1)
1 , L(1)

2 )︸ ︷︷ ︸
h(L(1))

] for a specified function h(·).

▶ Suppose no restrictions are placed on the distribution of L(1).
▶ The elements of Λ⊥

1 will be proportional to h(L(1))− µ.

▶ Thus, we choose: a(L(1)) = h(L(1))− µ.
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Application of general theory of estimation: b(O)

▶ Any observed data random variable can we written as

b(O) = R1R2c11(L(1)) + R1(1− R2)c10(L(1)
1 ) + (1− R1)R2c01(L(1)

2 ) + (1− R1)(1− R2)c00

▶ What restrictions on c11, c10, c01, c00 ensure that the E[b(O) | L(1)] = 0?

c11(L(1)) =
−π10(L(1))c10(L(1)

1 )− π01(L(1))c01(L(1)
2 )− π00(L(1))c00

π11(L(1))

where πij(L(1)) = p(R1 = i ,R2 = j | L(1)).

▶ Any observed data random variable that has mean zero given L(1) can be
expressed as {

−
R1R2

π11(L(1))
π10(L(1)) + R1(1− R2)

}
c10(L(1)

1 )

+
{
−

R1R2

π11(L(1))
π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 )

+
{
−

R1R2

π11(L(1))
π00(L(1)) + (1− R1)(1− R2)

}
c00

90/110



Application of general theory of estimation: b(O)

▶ Any observed data random variable can we written as

b(O) = R1R2c11(L(1)) + R1(1− R2)c10(L(1)
1 ) + (1− R1)R2c01(L(1)

2 ) + (1− R1)(1− R2)c00

▶ What restrictions on c11, c10, c01, c00 ensure that the E[b(O) | L(1)] = 0?

c11(L(1)) =
−π10(L(1))c10(L(1)

1 )− π01(L(1))c01(L(1)
2 )− π00(L(1))c00

π11(L(1))

where πij(L(1)) = p(R1 = i ,R2 = j | L(1)).

▶ Any observed data random variable that has mean zero given L(1) can be
expressed as {

−
R1R2

π11(L(1))
π10(L(1)) + R1(1− R2)

}
c10(L(1)

1 )

+
{
−

R1R2

π11(L(1))
π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 )

+
{
−

R1R2

π11(L(1))
π00(L(1)) + (1− R1)(1− R2)

}
c00

90/110



Application of general theory of estimation: b(O)

▶ Any observed data random variable can we written as

b(O) = R1R2c11(L(1)) + R1(1− R2)c10(L(1)
1 ) + (1− R1)R2c01(L(1)

2 ) + (1− R1)(1− R2)c00

▶ What restrictions on c11, c10, c01, c00 ensure that the E[b(O) | L(1)] = 0?

c11(L(1)) =
−π10(L(1))c10(L(1)

1 )− π01(L(1))c01(L(1)
2 )− π00(L(1))c00

π11(L(1))

where πij(L(1)) = p(R1 = i ,R2 = j | L(1)).

▶ Any observed data random variable that has mean zero given L(1) can be
expressed as {

−
R1R2

π11(L(1))
π10(L(1)) + R1(1− R2)

}
c10(L(1)

1 )

+
{
−

R1R2

π11(L(1))
π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 )

+
{
−

R1R2

π11(L(1))
π00(L(1)) + (1− R1)(1− R2)

}
c00

90/110



Application of general theory of estimation: game plan
Find restrictions on elements in ΛO,⊥

1 to ensure orthogonality to Λ2, where:

ΛO,⊥
1 =

{
R1R2

π11(L(1))
{

h(L(1))− µ
}

+
{
− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 )

+
{
− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 )

+
{
− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00

: for any c10(L(1)
1 ), c01(L(1)

2 ), c00

}
.

This means we should find restrictions on c10(L(1)
1 ), c01(L(1)

2 ), c00 to ensure
orthogonality to Λ2.

▶ For any f1 ∈ ΛO,⊥
1 and f2 ∈ Λ2: E[f1f2] = 0.
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Example: block-parallel model

L(1)
1 L(1)

2

R1 R2

L1 L2

πjk(L(1)) = π1(L(1)
2 )j{1− π1(L(1)

2 )}1−jπ2(L(1)
1 )k{1− π2(L(1)

1 )}1−k

L = π1(L(1)
2 )R1{1− π1(L(1)

2 )}1−R1π2(L(1)
1 )R2{1− π2(L(1)

1 )}1−R2

logL =R1 log{π1(L(1)
2 )}+ (1− R1) log{1− π1(L(1)

2 )}+

+ R2 log{π2(L(1)
1 )}+ (1− R2) log{1− π2(L(1)

1 )}

∂ logL
∂η

= {R1 − π1(L(1)
2 )}

π1(L(1)
2 ){1− π1(L(1)

2 )}
π′

1(L(1)
2 ) + {R2 − π2(L(1)

1 )}
π2(L(1)

1 ){1− π2(L(1)
1 )}

π′
2(L(1)

1 )
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Example: block-parallel model

Λ2 =
{
{R1 − π1(L(1)

2 )}g1(L(1)
2 ) + {R2 − π2(L(1)

1 )}g2(L(1)
1 )) : g1(L(1)

2 ), g2(L(1)
1 )

}
Λ2 = Λ2,1 ⊕ Λ2,2

, where

Λ2,1 =
{
{R1 − π1(L(1)

2 )}g1(L(1)
2 ) : g1(L(1)

2 )
}

and
Λ2,2 =

{
{R2 − π2(L(1)

1 )}g2(L(1)
1 ) : g2(L(1)

1 )
}
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Example: block-parallel model

What choices of c10(L(1)
1 ), c01(L(1)

2 ), c00 that index elements of ΛO,⊥
1 ensure

orthogonality to both Λ2,1 and Λ2,2

Click here for detailed derivations in the supplement [ → ].
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Example: block-conditional MAR model

L(1)
1 L(1)

2

R1 R2

L1 L2

πjk(L(1)) =πj
1{1− π1}1−j×

π2(1, L(1)
1 )jk{1− π2(1, L(1)

1 )}j(1−k)π2(0, L(1)
1 )(1−j)k{1− π2(0, L(1)

1 )}(1−j)(1−k)

L =πR1
1 {1− π1}1−R1π2(1, L(1)

1 )R1R2{1− π2(1, L(1)
1 )}R1(1−R2)×

π2(0, L(1)
1 )(1−R1)R2{1− π2(0, L(1)

1 )}(1−R2)(1−R2)

logL =R1 log{π1}+ (1− R1) log{1− π1}+ R1R2 log{π2(1, L(1)
1 )}

+ R1(1− R2) log{1− π2(1, L(1)
1 )}+ (1− R1)R2 log{π2(0, L(1)

1 )}

+ (1− R1)(1− R2) log{1− π2(0, L(1)
1 )}
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Example: block-conditional MAR model

∂ logL
∂η

= {R1 − π1}
π1{1− π1}

+ R1
{R2 − π2(1, L(1)

1 )}
π2(1, L(1)

1 ){1− π2(1, L(1)
1 )}

π′
2(1, L(1)

1 )+

(1− R1) {R2 − π2(0, L(1)
1 )}

π2(0, L(1)
1 ){1− π2(0, L(1)

1 )}
π′

2(0, L(1)
1 )

Λ2 =
{
{R1 − π1}g1 + R1{R2 − π2(1, L(1)

1 )}g2(1, L(1)
1 )+

(1− R1){R2 − π2(0, L(1)
1 )}g2(0, L(1)

1 ) : g1, g2(1, L(1)
1 ), g2(0, L(1)

1 )
}

Λ2 = Λ2,1 ⊕ Λ2,2,1 ⊕ Λ2,2,0

Λ2,1 = {{R1 − π1}g1 : g1}

Λ2,2,1 =
{

R1{R2 − π2(1, L(1)
1 )}g2(1, L(1)

1 ) : g2(1, L(1)
1 )

}
Λ2,2,0 =

{
(1− R1){R2 − π2(0, L(1)

1 )}g2(0, L(1)
1 ) : g2(0, L(1)

1 )
}
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Example: block-conditional MAR model

Click here for detailed derivations in the supplement [ → ].
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Example: permutation model

L(1)
1 L(1)

2

R1 R2

L1 L2

πjk(L(1)) =π1(L(1)
2 )j{1− π1(L(1)

2 )}1−j×

π2(1, L(1)
1 )jk{1− π2(1, L(1)

1 )}j(1−k)π2(0)(1−j)k{1− π2(0)}(1−j)(1−k)

L =π1(L(1)
2 )R1{1− π1(L(1)

2 )}1−R1π2(1, L(1)
1 )R1R2{1− π2(1, L(1)

1 )}R1(1−R2)×

π2(0)(1−R1)R2{1− π2(0)}(1−R2)(1−R2)

logL =R1 log{π1(L(1)
2 )}+ (1− R1) log{1− π1(L(1)

2 )}+ R1R2 log{π2(1, L(1)
1 )}

+ R1(1− R2) log{1− π2(1, L(1)
1 )}+ (1− R1)R2 log{π2(0)}

+ (1− R1)(1− R2) log{1− π2(0)}
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Example: permutation model

∂ logL
∂η

= {R1 − π1(L(1)
2 )}

π1(L(1)
2 ){1− π1(L(1)

2 )}
π′

1(L(1)
2 ) + R1

{R2 − π2(1, L(1)
1 )}

π2(1, L(1)
1 ){1− π2(1, L(1)

1 )}
π′

2(1, L(1)
1 )+

(1− R1) {R2 − π2(0)}
π2(0{1− π2(0}

Λ2 =
{
{R1 − π1(L(1)

2 )}g1(L(1)
2 ) + R1{R2 − π2(1, L(1)

1 )}g2(1, L(1)
1 )+

(1− R1){R2 − π2(0)}g2(0) : g1(L(1)
2 ), g2(1, L(1)

1 ), g2(0)
}

Λ2 = Λ2,1 ⊕ Λ2,2,1 ⊕ Λ2,2,0

Λ2,1 =
{
{R1 − π1(L(1)

2 )}g1(L(1)
2 ) : g1(L(1)

2 )
}

Λ2,2,1 =
{

R1{R2 − π2(1, L(1)
1 )}g2(1, L(1)

1 ) : g2(1, L(1)
1 )

}
Λ2,2,0 = {(1− R1){R2 − π2(0)}g2(0 : g2(0)}
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Example: permutation model

Click here for detailed derivations in the supplement [ → ].
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Wrap up



Revisiting course outline and objectives

Part I. Missing data DAGs
▶ Represented missingness mechanisms graphically; interpreted a missing data

DAG model as a class of distributions with a set of independence
restrictions.

Part II. Non-parametric identification
▶ Discussed identification tricks for full and target laws, and showed how

non-identification proofs go.

Part III. Non/Semi-parametric estimation
▶ Given and identified query, derived the non-parametric influence functions;

Given three types of m-DAGs with MNAR missingness, derived the tangent
space of the underlying full data and observed data distributions.

101/110



Provocative question #1: Missing data DAGs with hidden variables

▶ What if there exist variables that are not just missing but completely unobserved?
▶ Summarize the observed data distribution with a missing data acyclic directed

mixed graph (ADMG).

L(1)
1 L(1)

2

R1 R2

U3
L1 L2

U1

U2

(a) G(V ,U)

L(1)
1 L(1)

2

R1 R2

L1 L2

(b) G(V )

L(1)
1 : smoking, L(1)

2 : lung cancer
U1: genotypic traits, U2: occupation, U3: ethnicity

▶ Missing data categorizations depend on whether districts and parents of districts
of missingness indicators contain counterfactuals, not just parents.

▶ A district consists of bidirected connected components.
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Full law identification in missing data ADMGs

Theorem (Graphical characterization of identified full laws)
Full law p(R, L(1),O) that is Markov relative to a missing data ADMG G is identified if
and only if G does not contain any colluding paths (Nabi et al., 2020).

All possible colluding paths between Ri and L(1)
i :

L(1)
i Rj · · · Rk Ri

L(1)
i Rj · · · L(1)

k Ri

L(1)
i L(1)

j · · · Rk Ri

L(1)
i L(1)

j · · · L(1)
k Ri

▶ The graphical condition of no colluding paths is sound and complete
▶ Identification functional is given by the odds ratio parameterization.
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Provocative question #2: Non-identifiability

▶ What if a parameter of interest is provably not identified in the assumed
m-DAG?

L(1)

R

L

Self-censoring

p(L(1)) not ID.

L(1)
1 L(1)

2

R1 R2

L1 L2

Colluder

p(L(1), R) not ID.

L(1)
1 L(1)

2

R1 R2

L1 L2

Criss-cross

p(L(1)) not ID.

▶ Generally speaking, we have two sets of options:

▶ Restrict the missing data model by posing extra assumptions on the full law.

▶ Obtain bounds, conduct sensitivity analysis, etc.
(Rotnitzky et al., 1998; Robins et al., 2000; Scharfstein and Irizarry, 2003)
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Suggestion 1: Partial/parametric identification

L(1)
1 L(1)

2

R1 R2

L1 L2

Criss-cross structure

p(L(1)
1 , L(1)

2 ) is not identified.

▶ Partial identification: p(L(1)
1 | L

(1)
2 ) and OR(L(1)

1 , L(1)
2 ) are identified.

▶ We can test L(1)
1 ⊥⊥ L(1)

2 without further assumptions.

▶ Under what conditions p(L(1)
1 , L(1)

2 ) is identified? assume p(L(1)
1 ) and

p(L(1)
2 | L

(1)
1 ) follow exponential family distributions:

L(1)
1 ∼ exp

{
l (1)
1 ηl1 − bl1 (ηl1 )

Φl1
+ cl1 (l1; Φl1 )

}
L(1)

2 | L
(1)
1 ∼ exp

{
l (1)
2 η − b(η)

Φ
+ c(l (1)

2 ; Φ)
}
, g(µ(η)) = α+ βl (1)

1 .

▶ What are sufficient conditions for target law ID in the above class of
distributions? (Guo et al., 2023)
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Suggestion 2: Sensitivity analysis

L(1)

R

L

self-censoring

p(L(1)) =
∑

r∈{0,1}

p(L(1),R = r)

= p(L(1) | R = 0)× p(R = 0) + p(L(1) | R = 1)× p(R = 1).

p(L(1) | R = 0) ∝ p(L(1) | R = 1)× exp(γ S(L(1)))

▶ The relation is controlled by the sensitivity parameter γ.

▶ S(L(1)) is a specified function of L(1).
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Provocative question #3: Testable implications in m-DAGs

▶ Similar to DAGs, absence of an edge in an m-DAG implies a restriction of the
form A ⊥ B | C . Is this restriction testable from observed finite samples?

▶ If all the restrictions encoded in a missing data DAG are provably untestable
(i.e., no restriction on the observed data law), the full law Markov relative to
the DAG is said to be non-parametric saturated (Robins; 1997)

▶ An example of a non-parametric saturated model is the permutation model.

▶ Submodels of a non-parametric saturated model can still be tested using
partially observed data (Nabi and Bhattacharya, 2023).
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Testable implications

L(1)
1 L(1)

2

R1 R2

L1 L2

MAR model

L(1)
1 L(1)

2

R1 R2

L1 L2

Permutation supermodel

▶ Is R1 ⊥⊥ L(1)
2 ?

▶ Fit p(R1) and p(R1 | L(1)
2 ) and compare the goodness of fits.

▶ Use a weighted estimating equation to fit p(R1 | L(1)
2 ;α)

n∑
i=1

R2,i

πn(R2 = 1 | R1,i , L1,i )
× U(R1,i , L2,i ;α) = 0,

where E[U(R1, L(1)
2 ;α)] = 0 with respect to the full law.
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Testable implications

▶ Nabi and Bhattacharya (2023) have designed empirical tests for restrictions in
three broad classes of missing data models via weighted likelihood-ratio tests and
odds-ratio parameterizations.

X1 X2

R1 R2

X ∗1 X ∗2

Permuation-model
(Robins; 1997)

X1 X2

R1 R2

X ∗1 X ∗2

MNAR submodel

X1 X2

R1 R2

X ∗1 X ∗2

MAR submodel

X1 X2

R1 R2

X ∗1 X ∗2

No self-censoring
(Malinsky et al., 2021)

X1 X2

R1 R2

X ∗1 X ∗2

MNAR submodel

X1 X2

R1 R2

X ∗1 X ∗2

Criss-cross model
Neither full nor target law is ID.

(Nabi and Bhattacharya, 2023)

(Guo et al., 2023)

109/110



Many interesting open problems

▶ Missing data DAGs with or without unmeasured confounding:
▶ A concise and precise representation of MNAR mechanisms.

▶ Identification:
▶ Complete characterization of target law ID remains an open problem while

such characterizations for full law ID exist.
▶ Partial identification.

▶ Estimation:
▶ Intuitive estimation strategies: IPW-style estimators.
▶ An understudied research area: influence-function based estimations in

m-DAGs.

▶ Testable implications:
▶ Data-driven structure learning approaches.
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Block-Parallel Model

[ ← ]

What choices of c10(L(1)
1 ), c01(L(1)

2 ), c00 ensure orthogonality with all elements of
Λ2,1?

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}
{R1 − π1(L(1)

2 )}g1(L(1)
2 )+{

− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 ){R1 − π1(L(1)

2 )}g1(L(1)
2 )+{

− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 ){R1 − π1(L(1)
2 )}g1(L(1)

2 )+{
− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00{R1 − π1(L(1)
2 )}g1(L(1)

2 )
]

= 0 .

for all g1(L(1)
2 ).



Block-Parallel Model

For this to hold for all g1(L(1)
2 ), it must be the case that

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}
{R1 − π1(L(1)

2 )}+{
− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 ){R1 − π1(L(1)

2 )}+{
− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 ){R1 − π1(L(1)
2 )}+{

− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00{R1 − π1(L(1)
2 )} L(1)

2

]
= 0 .

(1)



Block-Parallel Model

What choices of c10(L(1)
1 ), c01(L(1)

2 ), c00 ensure orthogonality with all elements of
Λ2,2?

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}
{R2 − π2(L(1)

1 )}g2(L(1)
1 )+{

− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 ){R2 − π2(L(1)

1 )}g2(L(1)
1 )+{

− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 ){R2 − π2(L(1)
1 )}g2(L(1)

1 )+{
− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00{R2 − π2(L(1)
1 )}g2(L(1)

1 )
]

= 0 .

for all g2(L(1)
1 ).



Block-Parallel Model

For this to hold for all g2(L(1)
1 ), it must be the case that

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}
{R2 − π2(L(1)

1 )}+{
− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 ){R2 − π2(L(1)

1 )}+{
− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 ){R2 − π2(L(1)
1 )}+{

− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00{R2 − π2(L(1)
1 )} L(1)

1

]
= 0 .

(2)



Block-Parallel Model

(1) implies that

c01(L(1)
2 ; c00) =

E
[
h(L(1))− µ L(1)

2

]
E

[
π2(L(1)

1 ) L(1)
2

]
︸ ︷︷ ︸

c01(L(1)
2 )

−
E

[
1− π2(L(1)

1 ) L(1)
2

]
E

[
π2(L(1)

1 ) L(1)
2

]
︸ ︷︷ ︸

c′
01(L(1)

2 )

c00

(2) implies that

c10(L(1)
1 ; c00) =

E
[
h(L(1))− µ L(1)

1

]
E

[
π1(L(1)

2 ) L(1)
1

]
︸ ︷︷ ︸

c10(L(1)
1 )

−
E

[
1− π1(L(1)

2 ) L(1)
1

]
E

[
π1(L(1)

2 ) L(1)
1

]
︸ ︷︷ ︸

c′
10(L(1)

1 )

c00

So, ΛO,⊥ contains a collection of elements indexed by c00.



Block-Parallel Model

We will work with

R1R2

π11(L(1))
{

h(L(1))− µ
}

+{
− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
} {

c10(L(1)
1 )− c ′

10(L(1)
1 )c00

}
+{

− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

} {
c01(L(1)

2 )− c ′
01(L(1)

2 )c00

}
+{

− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00



Block-Parallel Model

Need estimators for

▶ π1(L(1)
2 )

▶ π2(L(1)
1 )

▶ E [π2(L(1)
1 )|L(1)

2 ]

▶ E [π1(L(1)
2 )|L(1)

1 ]

▶ E [h(L(1))|L(1)
1 ]

▶ E [h(L(1))|L(1)
2 ]



Block-Parallel Model

To find the optimal choice of c00, minimize

E
[{

R1R2

π11(L(1))
{

h(L(1))− µ
}

+{
− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
} {

c10(L(1)
1 )− c ′

10(L(1)
1 )c00

}
+{

− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

} {
c01(L(1)

2 )− c ′
01(L(1)

2 )c00

}
+{

− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00

}2
]



Block-Parallel Model

Set derivative with respect to c00 equal to zero.

E
[{

R1R2

π11(L(1))

{
h(L(1))− µ

}
+{

−
R1R2

π11(L(1))
π10(L(1)) + R1(1− R2)

}{
c10(L(1)

1 )
}

+{
−

R1R2

π11(L(1))
π10(L(1)) + R1(1− R2)

}{
−c′

10(L(1)
1 )c00

}
+{

−
R1R2

π11(L(1))
π01(L(1)) + (1− R1)R2

}{
c01(L(1)

2 )
}

+{
−

R1R2

π11(L(1))
π01(L(1)) + (1− R1)R2

}{
−c′

01(L(1)
2 )c00

}
+{

−
R1R2

π11(L(1))
π00(L(1)) + (1− R1)(1− R2)

}
c00

}
×{{

−
R1R2

π11(L(1))
π10(L(1)) + R1(1− R2)

}{
−c′

10(L(1)
1 )

}
+{

−
R1R2

π11(L(1))
π01(L(1)) + (1− R1)R2

}{
−c′

01(L(1)
2 )

}
+{

−
R1R2

π11(L(1))
π00(L(1)) + (1− R1)(1− R2)

}}]
= 0



Block-Parallel Model

c00 = a
b

where

b = −E
[{

π10(L(1))
π11(L(1))

+ 1
}
π10(L(1))

{
c′

10(L(1)
1 )

}2
]
−

E
[{

π10(L(1))π01(L(1))
π11(L(1))

}{
2c′

10(L(1)
1 )c′

01(L(1)
2 )

}]
+

E
[{

π10(L(1))π00(L(1))
π11(L(1))

}{
2c′

10(L(1)
1 )

}]
−

E
[{

π01(L(1))
π11(L(1))

+ 1
}
π01(L(1))

{
c′

01(L(1)
2 )

}2
]

+

E
[{

π01(L(1))π00(L(1))
π11(L(1))

}{
2c′

01(L(1)
2 )

}]
+

E
[{

π00(L(1))
π11(L(1))

+ 1
}
π00(L(1))

]



Block-Parallel Model

c00 = a
b

where

a = E
[{

π10(L(1))
π11(L(1))

{
h(L(1))− µ

}}{
c′

10(L(1)
1 )

}]
+

E
[{

π01(L(1))
π11(L(1))

{
h(L(1))− µ

}}{
c′

01(L(1)
2 )

}]
−

E
[{

π00(L(1))
π11(L(1))

{
h(L(1))− µ

}}]
−

E
[{

π10(L(1))
π11(L(1))

+ 1
}
π10(L(1))

{
c10(L(1)

1 )
}{

c′
10(L(1)

1 )
}]
−

E
[{

π10(L(1))π01(L(1))
π11(L(1))

}{
c10(L(1)

1 )c′
01(L(1)

2 ) + c01(L(1)
2 )c′

10(L(1)
1 )

}]
+

E
[{

π10(L(1))π00(L(1))
π11(L(1))

}{
c10(L(1)

1 )
}]
−

E
[{

π01(L(1))
π11(L(1))

+ 1
}
π01(L(1))

{
c01(L(1)

2 )
}{

c′
01(L(1)

2 )
}]

+

E
[{

π01(L(1))π00(L(1))
π11(L(1))

}{
c01(L(1)

2 )
}]



[ ← ]



Block-Conditional Model

What choices of c10(L(1)
1 ), c01(L(1)

2 ), c00 ensure orthogonality with all elements of
Λ2,1?

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}
{R1 − π1}g1+{

− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 ){R1 − π1}g1+{

− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 ){R1 − π1}g1+{
− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00{R1 − π1}g1

]
= 0 .

for all g1.
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Block-Conditional Model

For this to hold for all g1, it must be the case that

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}
{R1 − π1}+{

− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 ){R1 − π1}+{

− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 ){R1 − π1}+{
− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00{R1 − π1}
]

= 0 (3)



Block-Conditional Model

What choices of c10(L(1)
1 ), c01(L(1)

2 ), c00 ensure orthogonality with all elements of
Λ2,2,1?

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}

R1{R2 − π2(1, L(1)
1 )}g2(1, L(1)

1 )+{
− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 )R1{R2 − π2(1, L(1)

1 )}g2(1, L(1)
1 )+{

− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 )R1{R2 − π2(1, L(1)
1 )}g2(1, L(1)

1 )+{
− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00R1{R2 − π2(1, L(1)
1 )}g2(1, L(1)

1 )
]

= 0

for all g2(1, L(1)
1 ).



Block-Conditional Model

For this to hold for all g2(1, L(1)
2 ), it must be the case that

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}

R1{R2 − π2(1, L(1)
1 )+{

− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 )R1{R2 − π2(1, L(1)

1 )+{
− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 )R1{R2 − π2(1, L(1)
1 )+{

− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00R1{R2 − π2(1, L(1)
1 ) L(1)

1

]
= 0 .

(4)



Block-Conditional Model

What choices of c10(L(1)
1 ), c01(L(1)

2 ), c00 ensure orthogonality with all elements of
Λ2,2,0?

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}

(1− R1){R2 − π2(0, L(1)
1 )}g2(0, L(1)

1 )+{
− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 )(1− R1){R2 − π2(0, L(1)

1 )}g2(0, L(1)
1 )+{

− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 )(1− R1){R2 − π2(0, L(1)
1 )}g2(0, L(1)

1 )+{
− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00(1− R1){R2 − π2(0, L(1)
1 )}g2(0, L(1)

1 )
]

= 0

for all g2(0, L(1)
1 ).



Block-Conditional Model

For this to hold for all g2(0, L(1)
2 ), it must be the case that

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}

(1− R1){R2 − π2(0, L(1)
1 )}+{

− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 )(1− R1){R2 − π2(0, L(1)

1 )}+{
− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 )(1− R1){R2 − π2(0, L(1)
1 )}+{

− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00(1− R1){R2 − π2(0, L(1)
1 )} L(1)

1

]
= 0

(5)



Block-Conditional Model

(4) implies
E [c01(L(1)

2 )|L(1)
1 ] = c00

(5) implies
E [π2(0, L(1)

1 )c01(L(1)
2 )] + c00E [1− π2(0, L(1)

1 )] = 0

(4) and (5) imply that

c00E [π2(0, L(1)
1 )] + c00E [1− π2(0, L(1)

1 )] = c00 = 0



Block-Conditional Model

What choices of c01(L(1)
2 ) make E [c01(L(1)

2 )|L(1)
1 ] = 0?

▶ Fredholm integral equation of the first kind.

▶ Obviously, c01(L(1)
2 ) = 0

▶ Non-trivial choices may or may not exist depending on the conditional
distribution of L(1)

2 given L(1)
1 .

▶ If the conditional distribution of L(1)
2 given L(1)

1 is from a canonical
exponential family, then c01(L(1)

2 ) = 0 a.s.



Block-Conditional Model

With c01(L(1)
2 ) = c00 = 0, (3) implies

c10(L(1)
1 ) = E [h(L(1))− µ|L(1)

1 ]
π1



Block-Conditional Model

We will work with

R1R2

π11(L(1))
{

h(L(1))− µ
}

+
{
− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

E [h(L(1))− µ|L(1)
1 ]

π1

= R1

π1

{
R2

π2(1, L(1)
1 )

h(L(1)) +
(

1− R2

π2(1, L(1)
1 )

)
E [h(L(1))|L(1)

1 ]− µ
}

Need estimators for

▶ π1

▶ π2(1, L(1)
1 )

▶ E [h(L(1))|L(1)
1 ]



[ ← ]



Permutation Model

What choices of c10(L(1)
1 ), c01(L(1)

2 ), c00 ensure orthogonality with all elements of
Λ2,1?

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}
{R1 − π1(L(1)

2 )}g1(L(1)
2 )+{

− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 ){R1 − π1(L(1)

2 )}g1(L(1)
2 )+{

− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 ){R1 − π1(L(1)
2 )}g1(L(1)

2 )+{
− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00{R1 − π1(L(1)
2 )}g1(L(1)

2 )
]

= 0 .

for all g1(L(1)
2 )

110/110



Permutation Model

For this to hold for all g1(L(1)
2 ), it must be the case that

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}
{R1 − π1(L(1)

2 )}+{
− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 ){R1 − π1(L(1)

2 )}+{
− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 ){R1 − π1(L(1)
2 )}+{

− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00{R1 − π1(L(1)
2 )} L(1)

2

]
= 0 .

(6)



Permutation Model

What choices of c10(L(1)
1 ), c01(L(1)

2 ), c00 ensure orthogonality with all elements of
Λ2,2,1?

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}

R1{R2 − π2(1, L(1)
1 )}g2(1, L(1)

1 )+{
− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 )R1{R2 − π2(1, L(1)

1 )}g2(1, L(1)
1 )+{

− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 )R1{R2 − π2(1, L(1)
1 )}g2(1, L(1)

1 )+{
− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00R1{R2 − π2(1, L(1)
1 )}g2(1, L(1)

1 )
]

= 0 .

for all g2(1, L(1)
1 )



Permutation Model

For this to hold for all g2(1, L(1)
1 ), it must be the case that

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}

R1{R2 − π2(1, L(1)
1 )}+{

− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 )R1{R2 − π2(1, L(1)

1 )}+{
− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 )R1{R2 − π2(1, L(1)
1 )}+{

− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00R1{R2 − π2(1, L(1)
1 )} L(1)

1

]
= 0 .

(7)



Permutation Model

What choices of c10(L(1)
1 ), c01(L(1)

2 ), c00 ensure orthogonality with all elements of
Λ2,2,0?

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}

(1− R1){R2 − π2(0)}g2(0)+{
− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 )(1− R1){R2 − π2(0)}g2(0)+{

− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 )(1− R1){R2 − π2(0)}g2(0)+{
− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00(1− R1){R2 − π2(0)}g2(0)
]

= 0

for all g2(0)



Permutation Model

For this to hold for all g2(0), it must be the case that

E
[

R1R2

π11(L(1))
{

h(L(1))− µ
}

(1− R1){R2 − π2(0)}+{
− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}

c10(L(1)
1 )(1− R1){R2 − π2(0)}+{

− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
c01(L(1)

2 )(1− R1){R2 − π2(0)}+{
− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}

c00(1− R1){R2 − π2(0)}
]

= 0 .

(8)



Permutation Model

(8) implies

c00 = E [{1− π1(L(1)
2 )}c01(L(1)

2 )]
E [{1− π1(L(1)

2 )}]
(6) implies

c01(L(1)
2 ) =

E [
{

h(L(1))− µ
}
|L(1)

2 ]
π2(0) − 1− π2(0)

π2(0) c00

Together, this implies that

c00 = E [h(L(1)){1− π1(L(1)
2 )}]

E [1− π1(L(1)
2 )]

− µ

and

c01(L(1)
2 ) = E [h(L(1))|L(1)

2 ]
π2(0) − 1− π2(0)

π2(0)

{
E [h(L(1)){1− π1(L(1)

2 )}]
E [1− π1(L(1)

2 )]

}
− µ



Permutation Model

Adding (7) implies

c10(L(1)
1 ) = E [h(L(1))− E [h(L(1))|L(1)

2 ]|L(1)
1 ]

E [π1(L(1)
2 )|L(1)

1 ]
+ E [π1(L(1)

2 )E [h(L(1))|L(1)
2 ]|L(1)

1 ]
E [π1(L(1)

2 )|L(1)
1 ]

− µ



Permutation Model

We will work with

R1R2

π11(L(1))h(L(1)) +{
− R1R2

π11(L(1))π10(L(1)) + R1(1− R2)
}
×{

E [h(L(1))− E [h(L(1))|L(1)
2 ]|L(1)

1 ]
E [π1(L(1)

2 )|L(1)
1 ]

+ E [π1(L(1)
2 )E [h(L(1))|L(1)

2 ]|L(1)
1 ]

E [π1(L(1)
2 )|L(1)

1 ]

}
+{

− R1R2

π11(L(1))π01(L(1)) + (1− R1)R2

}
×{

E [h(L(1))|L(1)
2 ]

π2(0) − 1− π2(0)
π2(0)

{
E [h(L(1)){1− π1(L(1)

2 )}]
E [1− π1(L(1)

2 )]

}}
+{

− R1R2

π11(L(1))π00(L(1)) + (1− R1)(1− R2)
}
×{

E [h(L(1)){1− π1(L(1)
2 )}]

E [1− π1(L(1)
2 )]

}
− µ



Permutation Model

Need estimators for

▶ π2(0)

▶ π2(1, L(1)
1 )

▶ π1(L(1)
2 )

▶ Conditional means of functions of L(1)
2 given L(1)

1 and conditional means of
functions of L(1)

1 given L(1)
2

▶ E [h(L(1))|L(1)
1 ]

▶ E [h(L(1))|L(1)
2 ]

▶ E [π1(L(1)
2 )|L(1)

1 ]
▶ E [π1(L(1)

2 )E [h(L(1))|L(1)
2 ]|L(1)

1 ]
▶ E [E [h(L(1))|L(1)

2 ]|L(1)
1 ]]



[ ← ]



No self-censoring chain graph model

L(1)
1 L(1)

2

R1 R2

L1 L2

MNAR submodel

L(1)
1 L(1)

2

R1 R2

L1 L2

No self-censoring supermodel

▶ Is R1 ⊥⊥ R2 | L(1)?

▶ This translates to whether or not OR(R1,R2 | L(1)) = 1?

▶ Identify the odds ratio using symmetric argument:

OR(R1 = 0,R2 = 0 | L(1)
1 , L(1)

2 ) =
p(R1 = r1 | R2 = r2, L2)
p(R1 = 1 | R2 = r2, L2)

×
p(R1 = 1 | R2 = 1, L2)
p(R1 = r1 | R2 = 1, L2)

=
p(R2 = r2 | R1 = r1, L1)
p(R2 = 1 | R1 = r1, L1)

×
p(R2 = 1 | R1 = 1, L1)
p(R2 = r2 | R1 = 1, L1)

= f (R1,R2).
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Identification and estimation of odds ratio

L(1)
1 L(1)

2

R1 R2

L1 L2

OR(R1 = 0,R2 = 0 | L(1)
1 , L(1)

2 )

▶ Estimating equation that is mean zero under the truth (E[U] = 0)

U =
R1R2

p(R = 1 | X (1))
× p(R = 0 | L(1))− (1− R1)(1− R2)

=
R1R2

p(R1 = 1 | R2 = 1, L(1)
2 )× p(R2 = 1 | R1 = 1, L(1)

1 )

× p(R1 = 0 | R2 = 1, L(1)
2 )× p(R2 = 0 | R1 = 1, L(1)

1 )× OR(R1 = R2 = 0 | L(1))
− (1− R1)(1− R2)
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