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Motivation

I Many popular missing data models can be expressed as
factorizations according to a DAG.

I Recent work [2, 4] proposed identification strategies for these
models based on causal inference methods.

I We show that these methods are unable to identify a large space
of identifiable target distributions. We propose, and illustrate via
examples, a new method that fixes based on a partial order, uses
selection bias on missingness, and treats missing variables as
hidden.

Missing Data Models of a DAG

I Target law p(X(1),O) over
I Potentially missing random variables {X (1)

1 . . . ,X (1)
k }

I Observed random variables {O1, . . . ,Om}.
I Nuisance law p(R|X(1),O) over

I Missingness indicators R ≡ {R1, . . . ,Rk}.
I Deterministic factors p(X|X(1),R)

I Xi ≡ X (1)
i if Ri = 1 and Xi ≡? if Ri = 0.

I Missing data models of a DAG G∏
Xi∈X

p(Xi|Ri,X
(1)
i )

∏
V∈X(1)∪O∪R

p(V |paG(V )),

I By chain rule of probability,

p(X(1),O) =
p(X,O,R = 1)

p(R = 1|X(1),O)
. p(X(1),O) ID ⇐⇒ p(R = 1|X(1),O) ID.

Fixability And Fixing In Causal Inference

I Consider a graph G with random variables V, fixed variables W
I V ∈ V is fixable if deG(V ) ∩ disG(V ) = {V}
I Graphical fixing operator φV(G) ≡ CADMG G ′(V \ {V}|W ∪ {V})

with edges into V removed.
I Probabilistic fixing operator φV(qV;G) yields a new kernel

q′V\{V}(V \ {V},W ∪ {V}) ≡
qV(V|W)

qV(V |mbG(V ),W)
.

Fixability And Fixing In Missing Data

I For Z ⊆ DZ ∈ D(G), let RZ = {Rj|X (1)
j ∈ Z ∪mbG(Z),Rj 6∈ Z}, and

mbG(Z) ≡ (DZ ∪ paG(DZ)) \ Z. We say Z is fixable in G(V \X(1)
U ,W) if

I deG(Z) ∩ DZ ⊆ Z,
I S ∩ Z = ∅, where S are selected variables,
I Z ⊥⊥ (S ∪ RZ) \mbG(Z)|mbG(Z).

φZ(q;G) ≡
q(V \ (X(1)

U ∪ RZ),RZ = 1|W)∏
Z∈Z

q(Z |mbG(Z ;anG(DZ) ∩ {� Z})),RZ)|(R∩Z)∪RZ=1
.

Sequential And Parallel Fixing

I (a) and (d) are examples of DAGs where existing theory is
sufficient for identification of the target law.
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Figure: (a), (b), (c) are intermediate graphs obtained in identification of a
block-sequential model by fixing {R1,R2,R3} in sequence. (d) is an MNAR model that
is identifiable by fixing all Rs in parallel.

I The target law in (a) is obtained by fixing on a partial order where
R1,R2 are incompatible and R2 ≺ R3.

X (1)
1 X (1)

2 X (1)
3

R1 R2 R3

X1 X2 X3

(a) G

X1 X2 X (1)
3

r1 r2 R3

X1 X3

(b) φR2(G)

Figure: (a) A DAG where Rs are fixed according to a partial order. (b) The CADMG
obtained by fixing R2.

Dodging Selection Bias
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Figure: A DAG where selection bias on R1 is avoidable by following a partial order
fixing schedule on an ADMG induced by latent projecting out X (1)

1 .

Fixing Sets Of Variables
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Figure: (a) A DAG where the fixing operator must be performed on a set of vertices.
(b) A latent projection of a subproblem used for identification of p(R4|X (1)

4 ).

Fixing Variables Other Than Rs
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Figure: A DAG where variables besides Rs are required to be fixed.

Future Work

I Is the algorithm complete?
I Is there a polynomial time formulation?
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